数据科学项目PyScaffold扩展
项目描述
pyscaffoldext-dsproject
PyScaffold 为数据科学项目定制的扩展。此扩展受到 cookiecutter-data-science 的启发,并在许多方面得到了增强。主要区别在于它
- 提倡一种合适的Python包结构,以便进行分发和传输,
- 使用conda环境代替基于virtualenv的解决方案,因此更适合数据科学项目,
- 为Sphinx、pytest、pre-commit等提供更多默认配置,以促进干净编码和最佳实践。
还可以考虑使用dvc来版本控制和共享团队内部的数据。阅读这篇博客文章,了解如何通过使用类似这种的数据科学项目结构来有效地使用JupyterLab笔记本。
最终的目录结构如下所示
├── AUTHORS.md <- List of developers and maintainers.
├── CHANGELOG.md <- Changelog to keep track of new features and fixes.
├── CONTRIBUTING.md <- Guidelines for contributing to this project.
├── Dockerfile <- Build a docker container with `docker build .`.
├── LICENSE.txt <- License as chosen on the command-line.
├── README.md <- The top-level README for developers.
├── configs <- Directory for configurations of model & application.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
├── docs <- Directory for Sphinx documentation in rst or md.
├── environment.yml <- The conda environment file for reproducibility.
├── models <- Trained and serialized models, model predictions,
│ or model summaries.
├── notebooks <- Jupyter notebooks. Naming convention is a number (for
│ ordering), the creator's initials and a description,
│ e.g. `1.0-fw-initial-data-exploration`.
├── pyproject.toml <- Build configuration. Don't change! Use `pip install -e .`
│ to install for development or to build `tox -e build`.
├── references <- Data dictionaries, manuals, and all other materials.
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated plots and figures for reports.
├── scripts <- Analysis and production scripts which import the
│ actual PYTHON_PKG, e.g. train_model.
├── setup.cfg <- Declarative configuration of your project.
├── setup.py <- [DEPRECATED] Use `python setup.py develop` to install for
│ development or `python setup.py bdist_wheel` to build.
├── src
│ └── PYTHON_PKG <- Actual Python package where the main functionality goes.
├── tests <- Unit tests which can be run with `pytest`.
├── .coveragerc <- Configuration for coverage reports of unit tests.
├── .isort.cfg <- Configuration for git hook that sorts imports.
└── .pre-commit-config.yaml <- Configuration of pre-commit git hooks.
在dsproject-demo下查看初始项目结构的演示,并查看PyScaffold的文档以获取更多信息。
使用方法
只需使用conda install -c conda-forge pyscaffoldext-dsproject
安装此软件包,注意putup -h
显示了新的选项--dsproject
。创建数据科学项目就像这样一样简单
putup --dsproject my_ds_project
--dsproject
标志还包含--markdown
、--pre-commit
和--no-skeleton
等标志,以便于使用。
修改和贡献
此项目使用pre-commit,请确保在做出任何更改之前安装它
conda install pre-commit
cd pyscaffoldext-dsproject
pre-commit install
更新钩子到最新版本是个好主意
pre-commit autoupdate
请参阅PyScaffold的贡献指南。
项目详情
下载文件
下载适合您平台的文件。如果您不确定要选择哪个,请了解更多关于安装包的信息。
源代码分发
pyscaffoldext-dsproject-0.7.2.tar.gz (28.8 kB 查看散列)
构建分发
关闭
散列值 for pyscaffoldext_dsproject-0.7.2-py2.py3-none-any.whl
算法 | 散列摘要 | |
---|---|---|
SHA256 | f43d342f359623bc1743ccdb18d0e79351f010367d8dde38ff1260d642e7b720 |
|
MD5 | c791c123899438aacfd151800e09ea1c |
|
BLAKE2b-256 | 3e43e03d00863f358f92814ca58a5874f583c20934e62d7021e7b1a47bb6ddf3 |