Haystack 2.x组件,用于使用fastembed嵌入模型嵌入字符串和文档
项目描述
fastembed-haystack
目录
安装
pip install fastembed-haystack
用法
您可以通过导入以下方式使用FastembedTextEmbedder
和FastembedDocumentEmbedder
from haystack_integrations.components.embedders.fastembed import FastembedTextEmbedder
text = "fastembed is supported by and maintained by Qdrant."
text_embedder = FastembedTextEmbedder(
model="BAAI/bge-small-en-v1.5"
)
text_embedder.warm_up()
embedding = text_embedder.run(text)["embedding"]
from haystack_integrations.components.embedders.fastembed import FastembedDocumentEmbedder
from haystack.dataclasses import Document
embedder = FastembedDocumentEmbedder(
model="BAAI/bge-small-en-v1.5",
)
embedder.warm_up()
doc = Document(content="fastembed is supported by and maintained by Qdrant.", meta={"long_answer": "no",})
result = embedder.run(documents=[doc])
您可以通过导入以下方式使用FastembedSparseTextEmbedder
和FastembedSparseDocumentEmbedder
from haystack_integrations.components.embedders.fastembed import FastembedSparseTextEmbedder
text = "fastembed is supported by and maintained by Qdrant."
text_embedder = FastembedSparseTextEmbedder(
model="prithvida/Splade_PP_en_v1"
)
text_embedder.warm_up()
embedding = text_embedder.run(text)["embedding"]
from haystack_integrations.components.embedders.fastembed import FastembedSparseDocumentEmbedder
from haystack.dataclasses import Document
embedder = FastembedSparseDocumentEmbedder(
model="prithvida/Splade_PP_en_v1",
)
embedder.warm_up()
doc = Document(content="fastembed is supported by and maintained by Qdrant.", meta={"long_answer": "no",})
result = embedder.run(documents=[doc])
许可
fastembed-haystack
是根据Apache-2.0许可协议发布的。
项目详情
下载文件
下载适用于您的平台的文件。如果您不确定选择哪个,请了解更多关于安装包的信息。
源分布
fastembed_haystack-1.2.0.tar.gz (15.6 kB 查看哈希值)