YOLO逻辑多实例目标检测实验模块,以及基于图算法生成区域提议的教育模块
项目描述
请参阅模块API页面
https://engineering.purdue.edu/kak/distYOLO/YOLOLogic-2.1.4.html
获取有关此模块的所有信息,包括代码的最新更改信息。上面显示的页面列出了您可以在自己的代码中调用的所有模块功能。
Single-Instance and Multi-Instance Object Detection: Say you wish to experiment with YOLO-like logic for multi-instance object detection, you would need to construct an instance of the YOLOLogic class and invoke the methods shown below on this instance: rpg = YOLOLogic( dataroot = "./data/", image_size = [128,128], yolo_interval = 20, path_saved_yolo_model = "./saved_yolo_model", momentum = 0.9, learning_rate = 1e-6, epochs = 40, batch_size = 4, classes = ('Dr_Eval','house','watertower'), use_gpu = True, ) yolo = YOLOLogic.YoloLikeDetector( rpg = rpg ) yolo.set_dataloaders(train=True) yolo.set_dataloaders(test=True) model = yolo.NetForYolo(skip_connections=True, depth=8) model = yolo.run_code_for_training_multi_instance_detection(model, display_images=False) yolo.run_code_for_training_multi_instance_detection(model, display_images = True) Graph-Based Algorithms for Region Proposals: To generate region proposals, you would need to construct an instance of the YOLOLogic class and invoke the methods shown below on this instance: rpg = YOLOLogic( ### The first 6 options affect only the graph-based part of the algo sigma = 1.0, max_iterations = 40, kay = 0.05, image_normalization_required = True, image_size_reduction_factor = 4, min_size_for_graph_based_blobs = 4, ### The next 4 options affect only the Selective Search part of the algo color_homogeneity_thresh = [20,20,20], gray_var_thresh = 16000, texture_homogeneity_thresh = 120, max_num_blobs_expected = 8, ) image_name = "images/mondrian.jpg" segmented_graph,color_map = rpg.graph_based_segmentation(image_name) rpg.visualize_segmentation_in_pseudocolor(segmented_graph[0], color_map, "graph_based" ) merged_blobs, color_map = rpg.selective_search_for_region_proposals( segmented_graph, image_name ) rpg.visualize_segmentation_with_mean_gray(merged_blobs, "ss_based_segmentation_in_bw" )