Tensorflow Recommenders,TensorFlow推荐系统库。
项目描述
TensorFlow Recommenders
TensorFlow Recommenders 是一个用于使用 TensorFlow 构建推荐系统模型的库。
它帮助完成构建推荐系统的整个工作流程:数据准备、模型制定、训练、评估和部署。
它基于Keras构建,旨在具有平缓的学习曲线,同时仍然提供构建复杂模型的灵活性。
安装
请确保已安装TensorFlow 2.x,并使用 pip
进行安装
pip install tensorflow-recommenders
文档
快速入门
为 Movielens 100K 数据集构建分解模型非常简单(Colab)
from typing import Dict, Text
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs
# Ratings data.
ratings = tfds.load('movielens/100k-ratings', split="train")
# Features of all the available movies.
movies = tfds.load('movielens/100k-movies', split="train")
# Select the basic features.
ratings = ratings.map(lambda x: {
"movie_id": tf.strings.to_number(x["movie_id"]),
"user_id": tf.strings.to_number(x["user_id"])
})
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))
# Build a model.
class Model(tfrs.Model):
def __init__(self):
super().__init__()
# Set up user representation.
self.user_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
# Set up movie representation.
self.item_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
# Set up a retrieval task and evaluation metrics over the
# entire dataset of candidates.
self.task = tfrs.tasks.Retrieval(
metrics=tfrs.metrics.FactorizedTopK(
candidates=movies.batch(128).map(self.item_model)
)
)
def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:
user_embeddings = self.user_model(features["user_id"])
movie_embeddings = self.item_model(features["movie_id"])
return self.task(user_embeddings, movie_embeddings)
model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))
# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)
train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)
# Train.
model.fit(train.batch(4096), epochs=5)
# Evaluate.
model.evaluate(test.batch(4096), return_dict=True)
项目详情
下载文件
下载适合您平台的文件。如果您不确定选择哪个,请了解有关 安装包 的更多信息。
源分布
tensorflow-recommenders-0.7.3.tar.gz (61.9 kB 查看哈希值)
构建分布
关闭
哈希值 for tensorflow_recommenders-0.7.3-py3-none-any.whl
算法 | 哈希摘要 | |
---|---|---|
SHA256 | aa1ec194a0259e4a0d6a06d913a2b33e018762b9b11ed4570764f522afe80193 |
|
MD5 | 1998ea6ac1712a4dc9a8b0ec493fbd72 |
|
BLAKE2b-256 | d3917f9977f26bc0c94269d3f157710e9f1a112d1af23d4588285d846228ce3c |