定义scikit-lean估计器的搜索空间
项目描述
sksearchspace
Scikit-learn搜索空间配置,提供对scikit-learn估计器的精选搜索空间。
用法
from sksearchspace import SearchSpace
from sklearn.tree import DecisionTreeClassifier
estimator_space = SearchSpace.for_sklearn_estimator(DecisionTreeClassifier, seed=42)
estimator_space.sample()
# {'criterion': 'entropy','min_samples_leaf': 15, 'min_samples_split': 11}
estimator_space.sample()
# {'criterion': 'entropy', 'min_samples_leaf': 12, 'min_samples_split': 4}
sksearchspace
使用ConfigSpace进行采样。可以通过属性访问ConfigSpace
配置
estimator_space.configuration
# Configuration space object:
# Hyperparameters:
# criterion, Type: Categorical, Choices: {gini, entropy}, Default: gini
# min_samples_leaf, Type: UniformInteger, Range: [1, 20], Default: 1
# min_samples_split, Type: UniformInteger, Range: [2, 20], Default: 2
以下是如何加载JSON文件的示例
with open("search_space.json", "r") as f:
estimator_space = SearchSpace(f.read())
许可证
版权(c)2020 Thomas J. Fan
根据MIT许可证分发,pytest是免费和开源软件。
项目详情
下载文件
下载适用于您的平台的文件。如果您不确定选择哪个,请了解更多关于安装包的信息。
源分布
sksearchspace-2020.8.0.0.23.1.tar.gz (6.8 kB 查看哈希)
构建分布
关闭
sksearchspace-2020.8.0.0.23.1.tar.gz的哈希
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 3dca4985d19fbadee1daf949501ff85d851e3b2aa78a828f10d4f6b1c8aea3ed |
|
MD5 | ee6dcef1b3fa6cada4007a26a9c1c542 |
|
BLAKE2b-256 | 6e473e4ed2555cb9c271377a11d13d052b2466d9b03c60b3645b2530b1839712 |
关闭
sksearchspace-2020.8.0.0.23.1-py3-none-any.whl 的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 01ac11389773c7f79fec5ff7cc24427c2a5e3744cc06ba4d69652cb9cf3046da |
|
MD5 | 68bd4593d41c625f6063eb1aedab0993 |
|
BLAKE2b-256 | d52c82aa6c240fbbbfd9b4ab82cd58b4204a6db9168ba7cd1f378ebf204198fb |