跳转到主要内容

基于内存的、可选持久化的朴素贝叶斯文本分类器。

项目描述

基于内存的、可选持久化的朴素贝叶斯文本分类器。

This work is heavily inspired by the python "redisbayes" module found here:
[https://github.com/jart/redisbayes] and [https://pypi.python.org/pypi/redisbayes]

I've elected to write this to alleviate the network/time requirements when
using the bayesian classifier to classify large sets of text, or when
attempting to train with very large sets of sample data.

构建状态

https://travis-ci.org/hickeroar/simplebayes.svg?branch=master https://img.shields.io/badge/coverage-100%-brightgreen.svg?style=flat https://img.shields.io/badge/pylint-10.00/10-brightgreen.svg?style=flat https://img.shields.io/badge/flake8-passing-brightgreen.svg?style=flat

安装

sudo pip install simplebayes

基本用法

import simplebayes
bayes = simplebayes.SimpleBayes()

bayes.train('good', 'sunshine drugs love sex lobster sloth')
bayes.train('bad', 'fear death horror government zombie')

assert bayes.classify('sloths are so cute i love them') == 'good'
assert bayes.classify('i would fear a zombie and love the government') == 'bad'

print bayes.score('i fear zombies and love the government')

bayes.untrain('bad', 'fear death')

assert bayes.tally('bad') == 3

缓存使用

import simplebayes
bayes = simplebayes.SimpleBayes(cache_path='/my/cache/')
# Cache file is '/my/cache/_simplebayes.pickle'
# Default cache_path is '/tmp/'

if not bayes.cache_train():
    # Unable to load cache data, so we're training it
    bayes.train('good', 'sunshine drugs love sex lobster sloth')
    bayes.train('bad', 'fear death horror government zombie')

    # Saving the cache so next time the training won't be needed
    bayes.persist_cache()

标记器覆盖

import simplebayes

def my_tokenizer(sample):
    return sample.split()

bayes = simplebayes.SimpleBayes(tokenizer=my_tokenizer)

许可证

The MIT License (MIT)

Copyright (c) 2015 Ryan Vennell

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

API文档

http://hickeroar.github.io/simplebayes/simplebayes.html

项目详情


下载文件

下载适合您平台的文件。如果您不确定选择哪个,请了解更多关于 安装软件包 的信息。

源分发

simplebayes-1.5.8.tar.gz (6.0 kB 查看哈希值)

上传时间:

构建分发

simplebayes-1.5.8-py3.4.egg (15.5 kB 查看哈希值)

上传时间:

simplebayes-1.5.8-py2.py3-none-any.whl (10.7 kB 查看哈希值)

上传于 Python 2 Python 3

simplebayes-1.5.8-py2.7.egg (15.1 kB 查看哈希值)

上传于 源代码

由以下支持

AWSAWS云计算和安全赞助商DatadogDatadog监控FastlyFastlyCDNGoogleGoogle下载分析MicrosoftMicrosoftPSF赞助商PingdomPingdom监控SentrySentry错误日志StatusPageStatusPage状态页