Tools for composing interdependent tasks on a scheduler (i.e. SLURM)
Project description
scheduler_tools
Tools for composing interdependent tasks on a scheduler (i.e. SLURM)
Setup requirements for launching prefect / dask-distributed on the cluster from your local desktop
On your local system
For whatever project you are working on add scheduler_tools to your dependency list.
conda activate {your_env_name}
pip install -e {your_project_name}
mkdir ~/.aics_dask
create file ~/.aics_dask/ssh.json
with contents
{"gateway":{
"url": "slurm-machine.bettertech.com",
"user": "flanders",
"identityfile": "/Users/flanders/ssh/flandersPrivateKey"
},
"dashboard_port": 8787,
"dask_port": 34009
}
On the cluster
conda activate {your_env_name}
pip install -e {your_project_name}
mkdir ~/.aics_dask
programmatically launch remote server and create tunnel
from scheduler_tools import Connector
from pathlib import Path
dask_prefs = dict()
dask_prefs['queue'] = 'aics_cpu_general'
dask_prefs['cores'] = 2
dask_prefs['ram'] = '8GB'
dask_prefs['wall_time'] = "02:00:00"
dask_prefs['min_workers'] = 2
dask_prefs['max_workers'] = 40
dask_prefs['remote_env'] = 'dask-scheduler'
dask_prefs['remote_command'] = 'setup_and_spawn.bash'
dask_prefs['remote_path'] = '~/.aics_dask/'
conn = Connector(distributed_dict=dask_prefs, pref_path=Path('~/.aics_dask/ssh.json'))
conn.run_command()
conn.stop_forward_if_running()
conn.forward_ports()
programmatically shutdown remote server and tunnel
from scheduler_tools import Connector
from pathlib import Path
conn = Connector(pref_path=Path('~/.aics_dask/ssh.json'))
conn.stop_dask()
Command line interface
CLI start Dask Cluster command
spawn_dask_cluster -s ~/.aics_dask_gpu/ssh.json -q aics_gpu_general -r <remote_env_name>
CLI stop Dask Cluster command
shutdown_dask_cluster -s ~/.aics_dask/ssh.json
Free software: Allen Institute Software License