scBoolSeq:将scRNA-Seq统计和布尔动力学联系起来。
项目描述
scBoolSeq
scRNA-Seq数据二值化和布尔动力学合成。
安装
Pip
pip install scboolseq
Conda
conda install -c conda-forge -c colomoto scboolseq
Docker
scBoolSeq
包含在 ColoMoTo Docker 发行版中。
用法
Python API
这里提供了一个最小示例,使用与CLI使用指南相同的dataset。有关更多信息,请参阅文档。
import pandas as pd
from scboolseq import scBoolSeq
# read in the normalized expression data
nestorowa = pd.read_csv("data_Nestorowa.tsv.gz", index_col=0, sep="\t")
nestorowa.iloc[1:5, 1:5]
# HSPC_031 HSPC_037 LT-HSC_001 HSPC_001
# Kdm3a 6.877725 0.000000 0.000000 0.000000
# Coro2b 0.000000 6.913384 8.178374 9.475577
# 8430408G22Rik 0.000000 0.000000 0.000000 0.000000
# Clec9a 0.000000 0.000000 0.000000 0.000000
#
# NOTE : here, genes are rows and observations are columns
scbool_nest = scBoolSeq()
##
## Binarization
##
# scBoolSeq expects genes to be columns, thus we transpose the DataFrame.
scbool_nest.fit(nestorowa.T) # compute binarization criteria
binarized = scbool_nestorowa.binarize(nestorowa.T)
binarized.iloc[1:5, 1:5]
# Kdm3a Coro2b 8430408G22Rik Phf6
# HSPC_031 1.0 NaN NaN 0.0
# HSPC_037 0.0 1.0 NaN 0.0
# LT-HSC_001 0.0 1.0 NaN 1.0
# HSPC_001 0.0 1.0 NaN 1.0
##
## Synthetic RNA-Seq generation from Boolean states
##
# We load in a boolean trace obtained from the simulation of a Boolean model
boolean_trace = pd.read_csv("boolean_dynamics.csv", index_col=0)
boolean_trace
# Kdm3a Coro2b 8430408G22Rik Phf6
# init 1.0 0.0 1.0 0.0
# transient_1 0.0 1.0 1.0 0.0
# transient_2 0.0 1.0 0.0 1.0
# stable_state 0.0 1.0 1.0 1.0
synthetic_scrna_pseudocounts = scbool_nestorowa.sample_counts(boolean_trace)
贡献者
项目详情
下载文件
下载适合您平台的文件。如果您不确定选择哪个,请了解有关 安装包 的更多信息。
源分布
scboolseq-2.1.0.tar.gz (28.2 kB 查看散列)
构建分布
scBoolSeq-2.1.0-py3-none-any.whl (31.6 kB 查看散列)
关闭
scboolseq-2.1.0.tar.gz的散列
算法 | 散列摘要 | |
---|---|---|
SHA256 | fe2c1c2231418d113cc8e82e54d2a2eb2cb4cc0307231d7ff7339b2b0733d1ca |
|
MD5 | ebab0a5a25819601aeb4d50a2484369d |
|
BLAKE2b-256 | 1f05c18f5ccca1c6ab8a9bdbd9994486a78a8d2588a2bf356720a26eac6374dc |
关闭
scBoolSeq-2.1.0-py3-none-any.whl的哈希值
算法 | 散列摘要 | |
---|---|---|
SHA256 | bba37c91dc7c98234b33ca8e0ee14b7abeaf3fb15828041535982d85948fd314 |
|
MD5 | b13bf822d85604b2cb7a184ce9ae80ba |
|
BLAKE2b-256 | df230428f8b27fca1c9d3cc70c7f1fca4dbd9a4c63dca1c2301eb68ca06a34a1 |