用于与在线ML river服务器交互的Python客户端
项目描述
River API客户端
这是一个为django-river-ml创建的API客户端,旨在方便与提供river模型(学习、预测等)的在线ML服务器交互。它目前不提供终端或命令行客户端,但可以从Python中使用,如果有一个很好的用例来添加命令行交互集,也可以添加。
快速入门
假设您有一个运行的服务器实现了与django-river-ml相同的空间,您可以执行以下操作。请注意,如果您的服务器需要身份验证,您可以生成一个令牌并将其导出到
export RIVER_ML_USER=dinosaur
export RIVER_ML_TOKEN=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
然后执行以下示例。
from river import datasets
from river import linear_model
from river import preprocessing
from riverapi.main import Client
def main():
# This is the default, just to show how to customize
cli = Client("http://localhost:8000")
# Basic server info (usually no auth required)
cli.info()
# Upload a model
model = preprocessing.StandardScaler() | linear_model.LinearRegression()
# Save the model name for other endpoint interaction
model_name = cli.upload_model(model, "regression")
print("Created model %s" % model_name)
# Train on some data
for x, y in datasets.TrumpApproval().take(100):
cli.learn(model_name, x=x, y=y)
# Get the model (this is a json representation)
model_json = cli.get_model_json(model_name)
model_json
# Saves to model-name>.pkl in pwd unless you provide a second arg, dest
cli.download_model(model_name)
# Make predictions
for x, y in datasets.TrumpApproval().take(10):
res = cli.predict(model_name, x=x)
print(res)
# By default the server will generate an identifier on predict that you can
# later use to label it. Let's do that for the last predict call!
identifier = res['identifier']
# Let's pretend we now have a label Y for the data we didn't before.
# The identifier is going to allow the server to find the features,
# x, and we just need to do:
res = cli.label(label=y, identifier=identifier, model_name=model_name)
print(res)
# Note that model_name is cached too, and we provide it here just
# to ensure the identifier is correctly associated.
# Get stats and metrics for the model
cli.stats(model_name)
cli.metrics(model_name)
# Get all models
print(cli.models())
# Stream events
for event in cli.stream_events():
print(event)
# Stream metrics
for event in cli.stream_metrics():
print(event)
# Delete the model
cli.delete_model(model_name)
if __name__ == "__main__":
main()
贡献者
我们使用all-contributors工具生成下面的贡献者图形。
Vanessasaurus 💻 |
许可证
此代码根据MPL 2.0LICENSE授权。
项目详情
下载文件
下载适用于您平台的文件。如果您不确定选择哪个,请了解有关安装包的更多信息。
源代码分发
riverapi-0.0.21.tar.gz (17.3 kB 查看哈希值)
构建分发
riverapi-0.0.21-py3-none-any.whl (17.2 kB 查看哈希值)