用于模拟脑MRI扫描中脑部切除术的算法。
项目描述
resector
实现了一个TorchIO转换,用于从T1加权脑MRI中模拟切除腔,以及相应的测地信息流(GIF)脑分区(版本3.0)。
MICCAI 2020上的相关演讲可在YouTube上找到
致谢
如果您在研究中使用了这个库,请引用以下出版物
Bibtex
@inproceedings{perez-garcia_simulation_2020,
address = {Cham},
series = {Lecture {Notes} in {Computer} {Science}},
title = {Simulation of {Brain} {Resection} for {Cavity} {Segmentation} {Using} {Self}-supervised and {Semi}-supervised {Learning}},
isbn = {978-3-030-59716-0},
doi = {10.1007/978-3-030-59716-0\_12},
language = {en},
booktitle = {Medical {Image} {Computing} and {Computer} {Assisted} {Intervention} {\textendash} {MICCAI} 2020},
publisher = {Springer International Publishing},
author = {P{\'e}rez-Garc{\'i}a, Fernando and Rodionov, Roman and Alim-Marvasti, Ali and Sparks, Rachel and Duncan, John S. and Ourselin, S{\'e}bastien},
year = {2020},
keywords = {Segmentation, Self-supervised learning, Neurosurgery},
pages = {115--125},
}
@article{perez-garcia_self-supervised_2021,
title = {A self-supervised learning strategy for postoperative brain cavity segmentation simulating resections},
issn = {1861-6429},
url = {https://doi.org/10.1007/s11548-021-02420-2},
doi = {10.1007/s11548-021-02420-2},
language = {en},
urldate = {2021-06-14},
journal = {International Journal of Computer Assisted Radiology and Surgery},
author = {P{\'e}rez-Garc{\'i}a, Fernando and Dorent, Reuben and Rizzi, Michele and Cardinale, Francesco and Frazzini, Valerio and Navarro, Vincent and Essert, Caroline and Ollivier, Ir{\`e}ne and Vercauteren, Tom and Sparks, Rachel and Duncan, John S. and Ourselin, S{\'e}bastien},
month = jun,
year = {2021},
file = {Springer Full Text PDF:/Users/fernando/Zotero/storage/SM9WHUB7/P{\'e}rez-Garc{\'i}a et al. - 2021 - A self-supervised learning strategy for postoperat.pdf:application/pdf},
}
安装
建议使用conda
conda create --name resenv python=3.8 --yes && conda activate resenv
pip install light-the-torch
ltt install torch
pip install git+https://github.com/fepegar/resector
resect --help
使用
resect t1.nii.gz gif_parcellation.nii.gz t1_resected.nii.gz t1_resection_label.nii.gz
使用与resector
一起安装的TorchIO可以下载一些样本图像
T1=`python -c "import torchio as tio; print(tio.datasets.FPG().t1.path)"`
GIF=`python -c "import torchio as tio; print(tio.datasets.FPG().seg.path)"`
resect $T1 $GIF t1_resected.nii.gz t1_resection_label.nii.gz
运行resect --help
获取更多选项。
资助
这项工作得到了工程与物理科学研究委员会(EPSRC)和惠康基金会的资助。
此外,还得到了EPSRC资助的伦敦大学学院智能集成成像与健康(i4health)博士研究生培训中心以及惠康/ EPSRC介入与外科科学中心(WEISS)的支持。
项目详情
下载文件
下载适合您平台的文件。如果您不确定选择哪个,请了解有关安装包的更多信息。
源代码发行版
resector-0.2.10.tar.gz (9.4 MB 查看哈希值)
编译发行版
resector-0.2.10-py2.py3-none-any.whl (86.3 kB 查看哈希值)
关闭
resector-0.2.10.tar.gz的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | a3d01a8172a902bf61595534e230d88436a8969dee9d7ec59264f2c6ad7d7fae |
|
MD5 | 810e80e3fbbed6c4d891eb8f1258754b |
|
BLAKE2b-256 | 960229338de7253cebd87336f423670dcff8be4816d86af220eefef3edfad817 |
关闭
resector-0.2.10-py2.py3-none-any.whl的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 233571a2888392e9c3668f5f17615954191eb6ff59253bc4e0b65f612c9b453e |
|
MD5 | 15cc539084ec144ddf7b18dd2a89e9e0 |
|
BLAKE2b-256 | a53c8ef88acb3e5048397260ab835a5fea55d44ed171c0bcec10f58a7405c0e4 |