Skip to main content

Reactive Dataflow Graphs

Project description

Reactive-Dataflow

Reactive Processing Graphs for Python.

Getting Started

Installation

pip install reactivedataflow

The key dependencies for this project include rx and networkx. These are outlined in the pyproject.toml dependencies section.

Usage

import reactivex as rx
from reactivedataflow import (
	GraphAssembler, 
	GraphModel, 
	VerbNodeModel, 
	InputNodeModel, 
	InputModel,
	verb,
	InputPort,
	ConfigPort
)
#
# Define a processing verb
#
@verb(
	name="print",
	ports=[
		InputPort(name="values", required=True, parameter="val"),
		ConfigPort(name="prefix", required=False, parameter="prefix"),
	]
)
def print_verb(val, prefix=""):
	return f"{prefix}{val}"

#
# Define a simple graph
#
assembler = GraphAssembler()
assembler.load(
	GraphModel(
		inputs=[
			# This is an input stream of values we'll define on build
			InputNodeModel(id="input_values")
		],
		nodes=[
			# Here we define the processing nodes
			VerbNodeModel(
				id="verb1",
				verb="print",
				config={"prefix": "emitted: "},
				input={
					"values": InputModel(node="input_values")
				}
			),
		],
	),
)

#
# Build the graph and bind input streams
#
graph = assembler.build(
	inputs={
		"input_values": rx.of([1, 2, 3])
	}
)
#
# Watch graph outputs
#
graph.output("verb1").subscribe(print)
# Output:
# emitted: 1
# emitted: 2
# emitted: 3

Developing

This project uses poetry for dependency management. You should have a recent Python version (e.g. 3.10+) and Poetry 1.8+ installed on your system.

# Install dependencies
poetry install

# Run tests
poetry run poe test

# Run static checks
poetry run poe check

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page