pystan 2.5.0.2
pip install pystan==2.5.0.2
Released:
Python interface to Stan, a package for Bayesian inference
Navigation
Unverified details
These details have not been verified by PyPIProject links
Meta
- License: GNU General Public License v3 (GPLv3) (GPLv3)
- Author: PyStan Developers
Classifiers
- Development Status
- Environment
- Intended Audience
- License
- Operating System
- Programming Language
- Topic
Project description
PyStan provides a Python interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.
For more information on Stan and its modeling language, see the Stan User’s Guide and Reference Manual at http://mc-stan.org/.
Important links
HTML documentation: https://pystan.readthedocs.org
Issue tracker: https://github.com/stan-dev/pystan/issues
Source code repository: https://github.com/stan-dev/pystan
Stan: http://mc-stan.org/
Stan User’s Guide and Reference Manual (pdf) available at http://mc-stan.org
Similar projects
Installation
NumPy and Cython (version 0.19 or greater) are required. matplotlib is optional.
PyStan and the required packages may be installed from the Python Package Index using pip.
pip install pystan
Alternatively, if Cython (version 0.19 or greater) and NumPy are already available, PyStan may be installed from source with the following commands
git clone --recursive https://github.com/stan-dev/pystan.git cd pystan python setup.py install
If you encounter an ImportError after compiling from source, try changing out of the source directory before attempting import pystan. On Linux and OS X cd /tmp will work.
Example
import pystan import numpy as np schools_code = """ data { int<lower=0> J; // number of schools real y[J]; // estimated treatment effects real<lower=0> sigma[J]; // s.e. of effect estimates } parameters { real mu; real<lower=0> tau; real eta[J]; } transformed parameters { real theta[J]; for (j in 1:J) theta[j] <- mu + tau * eta[j]; } model { eta ~ normal(0, 1); y ~ normal(theta, sigma); } """ schools_dat = {'J': 8, 'y': [28, 8, -3, 7, -1, 1, 18, 12], 'sigma': [15, 10, 16, 11, 9, 11, 10, 18]} fit = pystan.stan(model_code=schools_code, data=schools_dat, iter=1000, chains=4) print(fit) eta = fit.extract(permuted=True)['eta'] np.mean(eta, axis=0) # if matplotlib is installed (optional, not required), a visual summary and # traceplot are available fit.plot()
Project details
Unverified details
These details have not been verified by PyPIProject links
Meta
- License: GNU General Public License v3 (GPLv3) (GPLv3)
- Author: PyStan Developers
Classifiers
- Development Status
- Environment
- Intended Audience
- License
- Operating System
- Programming Language
- Topic
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Uploaded
CPython 3.4m
macOS 10.10+ Intel (x86-64, i386)
macOS 10.10+ x86-64
macOS 10.6+ Intel (x86-64, i386)
macOS 10.9+ Intel (x86-64, i386)
macOS 10.9+ x86-64
Uploaded
CPython 3.3m
macOS 10.10+ Intel (x86-64, i386)
macOS 10.10+ x86-64
macOS 10.6+ Intel (x86-64, i386)
macOS 10.9+ Intel (x86-64, i386)
macOS 10.9+ x86-64
Uploaded
CPython 2.7
macOS 10.10+ Intel (x86-64, i386)
macOS 10.10+ x86-64
macOS 10.6+ Intel (x86-64, i386)
macOS 10.9+ Intel (x86-64, i386)
macOS 10.9+ x86-64
File details
Details for the file pystan-2.5.0.2.tar.gz
.
File metadata
- Download URL: pystan-2.5.0.2.tar.gz
- Upload date:
- Size: 11.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
8bbd5b4edd14143bde5fc3f2298e77a5ddd41de69e5825532fb9925895f0f356
|
|
MD5 |
1693683f29886fee37c71881abaf15ca
|
|
BLAKE2b-256 |
c8d5187763e9b1ebd4bb931059b735bbd3fbbe1567e1f727ff667a90656efc1c
|
File details
Details for the file pystan-2.5.0.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
.
File metadata
- Download URL: pystan-2.5.0.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 46.4 MB
- Tags: CPython 3.4m, macOS 10.10+ Intel (x86-64, i386), macOS 10.10+ x86-64, macOS 10.6+ Intel (x86-64, i386), macOS 10.9+ Intel (x86-64, i386), macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
35a8fa1dc0ac260fd089613dc02fbeef8f1efe79bebe946dccda0101c5f55e7b
|
|
MD5 |
b9e027c6f95c6f047db2c7a28ccf4cd7
|
|
BLAKE2b-256 |
0939da2aacd876f04a70e76d4162f839c91aa9890f521ceaf7654ce947000df8
|
File details
Details for the file pystan-2.5.0.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
.
File metadata
- Download URL: pystan-2.5.0.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 46.4 MB
- Tags: CPython 3.3m, macOS 10.10+ Intel (x86-64, i386), macOS 10.10+ x86-64, macOS 10.6+ Intel (x86-64, i386), macOS 10.9+ Intel (x86-64, i386), macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
7444dbc1ad03aa309879b54d7bda33b8e1312e2bc0e9ca195c2fa1f2822daa2c
|
|
MD5 |
9518304d74387d72d7239422be81a009
|
|
BLAKE2b-256 |
a2a2a6e5f57f17dcb6a6bd5daa0f361651bc92975b0093c3f92802ecd8e3df7e
|
File details
Details for the file pystan-2.5.0.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
.
File metadata
- Download URL: pystan-2.5.0.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 46.4 MB
- Tags: CPython 2.7, macOS 10.10+ Intel (x86-64, i386), macOS 10.10+ x86-64, macOS 10.6+ Intel (x86-64, i386), macOS 10.9+ Intel (x86-64, i386), macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f9962baa083172a9f6b757c4944d74ed742c6e75b759da544fcc24c5e222f5bd
|
|
MD5 |
e74758665537b3931bb76606a3dce179
|
|
BLAKE2b-256 |
c3d9dc32c56ca8e984f623d28ba3c98eb5bf151788d6aa32162c55866c16c659
|