一个工具箱,使处理周期性边界条件下的材料更加容易。
项目描述
pbcpy 是一个Python3包,提供了一些处理周期性边界条件(PBC)下分子和材料的有用抽象。
此外,pbcpy公开了一个完全周期的N秩数组,即pbcarray,它是由numpy.ndarray派生而来的。
最后,pbcpy提供对一些常见文件格式的IO支持
Quantum Espresso .pp格式(只读)
XCrySDen .xsf格式(只写)
索引
基础
DirectCell 和 Coord 类,它们分别在实空间中定义了PBC下的晶胞和笛卡尔/晶体坐标;
ReciprocalCell 类,它定义了倒空间中的晶胞;
DirectGrid 和 ReciprocalGrid 类,它们是从 DirectCell 和 ReciprocalCell 派生出来的,并提供空间离散化。
DirectField 和 ReciprocalField 类,用于表示与 DirectGrid 或 ReciprocalGrid 关联的标量(如电子密度或势)和/或矢量场;
安装
通过 PyPI 安装 pbcpy;
pip install pbcpy
从 gitlab 安装开发版本;
git clone git@gitlab.com:ales.genova/pbcpy.git
注意:pbcpy 处于早期开发阶段,类和 API 可能会不事先通知而更改;
DirectCell 和 ReciprocalCell 类;
晶胞由其晶格矢量定义。为了创建一个 DirectCell 对象,我们需要提供包含晶格矢量(作为列)的 3x3 矩阵。pbcpy 预期原子单位,未来可能会添加一个灵活的单位系统;
>>> from pbcpy.base import DirectCell, ReciprocalCell
>>> import numpy as np
>>> lattice = np.identity(3)*10 # Make sure that at1 is of type numpy array.
>>> cell1 = DirectCell(lattice=lattice, origin=[0,0,0]) # 10 Bohr cubic cell
DirectCell 和 ReciprocalCell 属性;
lattice:晶格矢量(作为列);
volume:晶胞的体积;
origin:笛卡尔参考系的起点;
# the lattice
>>> cell1.lattice
array([[ 10., 0., 0.],
[ 0., 10., 0.],
[ 0., 0., 10.]])
# the volume
>>> cell1.volume
1000.0
DirectCell 和 ReciprocalCell 方法;
== 操作符:比较两个 Cell 对象;
get_reciprocal:返回一个新的 ReciprocalCell 对象,它是 self 的“倒数”晶胞(如果 self 是 DirectCell);
get_direct:返回一个新的 DirectCell 对象,它是 self 的“直接”晶胞(如果 self 是 ReciprocalCell);
注意,在将直接晶格和倒易晶格之间转换时,默认使用物理约定;
\big[\text{reciprocal.lattice}\big]^T = 2\pi \cdot \big[\text{direct.lattice}\big]^{-1}
>>> reciprocal_cell1 = cell1.get_reciprocal()
>>> print(reciprocal_cell1.lattice)
array([[ 0.62831853, 0. , 0. ],
[ 0. , 0.62831853, 0. ],
[ 0. , 0. , 0.62831853]])
>>> cell2 = reciprocal_cell1.get_direct()
>>> print(cell2.lattice)
array([[ 10., 0., 0.],
[ 0., 10., 0.],
[ 0., 0., 10.]])
>>> cell1 == cell2
True
Coord 类;
Coord 是一个基于 numpy.array 的派生类,具有一些额外的属性和方法。在周期性系统中,没有参考晶胞,坐标是没有意义的,这就是为什么 Coord 对象也包含一个内嵌的 DirectCell 属性。此外,坐标可以以 "Cartesian" 或 "Crystal" 基础表达。
>>> from pbcpy.base import Coord
>>> pos1 = Coord(pos=[0.5,0.6,0.3], cell=cell1, ctype="Cartesian")
Coord 属性;
basis:坐标类型:'Cartesian' 或 'Crystal'。
cell:与坐标相关联的 DirectCell 对象。
# the coordinate type (Cartesian or Crystal)
>>> pos1.basis
'Cartesian'
# the cell attribute is a Cell object
>>> type(pos1.cell)
pbcpy.base.DirectCell
Coord 方法;
to_crys(),to_cart():将 self 转换为晶体或笛卡尔基础(返回一个新的 Coord 对象)。
d_mic(other):计算连接两个坐标的矢量(从 self 到 other),使用最小图像公约(MIC)。结果是本身也是一个 Coord 对象。
dd_mic(other):使用 MIC 计算两个坐标之间的距离。
+/- 操作符:在不使用 MIC 的情况下计算两个坐标之间的差/和。当需要时自动执行基础转换。结果是本身也是一个 Coord 对象。
>>> pos1 = Coord(pos=[0.5,0.0,1.0], cell=cell1, ctype="Crystal")
>>> pos2 = Coord(pos=[0.6,-1.0,3.0], cell=cell1, ctype="Crystal")
# convert to Crystal or Cartesian (returns new object)
>>> pos1.to_cart()
Coord([ 5., 0., 10.]) # the coordinate was already Cartesian, the result is still correct.
>>> pos1.to_crys()
Coord([ 0.5, 0. , 1. ]) # the coordinate was already Crystal, the result is still correct.
## vector connecting two coordinates (using the minimum image convention), and distance
>>> pos1.d_mic(pos2)
Coord([ 0.1, 0. , 0. ])
>>> pos1.dd_mic(pos2)
0.99999999999999978
## vector connecting two coordinates (without using the minimum image convention) and distance
>>> pos2 - pos1
Coord([ 0.1, -1. , 2. ])
>>> (pos2 - pos1).length()
22.383029285599392
DirectGrid 和 ReciprocalGrid 类;
DirectGrid 和 ReciprocalGrid 分别是 DirectGrid 和 ReciprocalGrid 的子类。网格继承了它们各自单元格的所有属性和方法,并有一些自己特有的属性来处理等间距网格上的量。
>>> from pbcpy.grid import DirectGrid
# A 10x10x10 Bohr Grid, with 100x100x100 gridpoints
>>> lattice = np.identity(3)*10
>>> grid1 = DirectGrid(lattice=lattice, nr=[100,100,100], origin=[0,0,0])
Grid 属性
从 Cell 继承的所有属性
dV:单一点的体积,当计算积分量时很有用
nr:数组,每个方向的网格点数
nnr:网格中的总点数
r:每个网格点的笛卡尔坐标。一个类型为 Coord 的 3 级数组(仅限 DirectGrid)
s:每个网格点的晶体坐标。一个类型为 Coord 的 3 级数组(仅限 DirectGrid)
g:每个网格点的 G 矢量(仅限 ReciprocalGrid)
gg:每个网格点的 G 矢量的平方(仅限 ReciprocalGrid)
# The volume of each point
>>> grid1.dV
0.001
# Grid points for each direction
>>> grid1.nr
array([100, 100, 100])
# Total number of grid points
>>> grid1.nnr
1000000
# Cartesian coordinates at each grid point
>>> grid1.r
Coord([[[[ 0. , 0. , 0. ],
[ 0. , 0. , 0.1],
[ 0. , 0. , 0.2],
[ 0. , 0. , 0.3],
...]]])
>>> grid1.r.shape
(100, 100, 100, 3)
>>> grid1.r[0,49,99]
Coord([ 0. , 4.9, 9.9])
# Crystal coordinates at each grid point
>>> grid1.s
Coord([[[[ 0. , 0. , 0. ],
[ 0. , 0. , 0.01],
[ 0. , 0. , 0.02],
[ 0. , 0. , 0.03],
...]]]])
# Since DirectGrid inherits from DirectCell, we can still use the get_reciprocal methos
reciprocal_grid1 = grid1.get_reciprocal()
# reciprocal_grid1 is an instance of ReciprocalGrid
>>> reciprocal_grid1.g
array([[[[ 0. , 0. , 0. ],
[ 0. , 0. , 0.01],
[ 0. , 0. , 0.02],
...,
[ 0. , 0. , -0.03],
[ 0. , 0. , -0.02],
[ 0. , 0. , -0.01]],
...]]])
>>> reciprocal_grid1.g.shape
(100, 100, 100, 3)
>>> reciprocal_grid1.gg
array([[[ 0. , 0.0001, 0.0004, ..., 0.0009, 0.0004, 0.0001],
[ 0.0001, 0.0002, 0.0005, ..., 0.001 , 0.0005, 0.0002],
[ 0.0004, 0.0005, 0.0008, ..., 0.0013, 0.0008, 0.0005],
...,
[ 0.0009, 0.001 , 0.0013, ..., 0.0018, 0.0013, 0.001 ],
[ 0.0004, 0.0005, 0.0008, ..., 0.0013, 0.0008, 0.0005],
[ 0.0001, 0.0002, 0.0005, ..., 0.001 , 0.0005, 0.0002]],
...,
]])
>>> reciprocal_grid1.gg.shape
(100, 100, 100)
DirectField 和 ReciprocalField 类
DirectField 和 ReciprocalField 类分别代表直接网格和倒数网格上的标量场。这些类是 numpy.ndarray 的扩展。
操作,如插值、快速傅里叶变换和逆变换,以及任意 1D/2D/3D 切片变得非常简单。
DirectField 可以直接从 Quantum Espresso 后处理 .pp 文件生成(见下文)。
# A DirectField example
>>> from pbcpy.field import DirectField
>>> griddata = np.random.random(size=grid1.nr)
>>> field1 = DirectField(grid=grid1, griddata_3d=griddata)
# When importing a Quantum Espresso .pp files a DirectField object is created
>>> from pbcpy.formats.qepp import PP
>>> water_dimer = PP(filepp="/path/to/density.pp").read()
>>> rho = water_dimer.field
>>> type(rho)
pbcpy.field.DirectField
DirectField 属性
grid:表示与场相关的网格(它是一个 DirectGrid 或 ReciprocalGrid 对象)
span:具有大于 1 的点数的网格的维度数
rank:每个网格点上量的维度数
1:标量场(例如,rho 的秩为 1)
>1:矢量场(例如,rho 的梯度的秩为 3)
>>> type(rho.grid)
pbcpy.grid.DirectGrid
>>> rho.span
3
>>> rho.rank
1
# the density is a scalar field
DirectField 方法
从 numpy.array 继承的任何方法。
integral:返回场的积分。
get_3dinterpolation:将数据插值到不同的网格(返回一个新的 DirectField 对象)。3 阶样条插值。
get_cut(r0, [r1], [r2], [origin], [center], [nr]):通过提供任意向量和原点/中心来获取标量场的 1D/2D/3D 切片。
fft:计算自变量的傅里叶变换,并返回一个 ReciprocalField 实例,其中包含适当的 ReciprocalGrid
# Integrate the field over the whole grid
>>> rho.integral()
16.000000002898673 # the electron density of a water dimer has 16 valence electrons as expected
# Interpolate the scalar field from one grid to another
>>> rho.shape
(125, 125, 125)
>>> rho_interp = rho.get_3dinterpolation([90,90,90])
>>> rho_interp.shape
(90, 90, 90)
>> rho_interp.integral()
15.999915251442873
# Get arbitrary cuts of the scalar field.
# In this example get the cut of the electron density in the plane of the water molecule
>>> ppfile = "/path/to/density.pp"
>>> water_dimer = PP(ppfile).read()
>>> o_pos = water_dimer.ions[0].pos
>>> h1_pos = water_dimer.ions[1].pos
>>> h2_pos = water_dimer.ions[2].pos
>>> rho_cut = rho.get_cut(r0=o_h1_vec*4, r1=o_h2_vec*4, center=o_pos, nr=[100,100])
# plot_cut is itself a DirectField instance, and it can be either exported to an xsf file (see next session)
# or its values can be analized/manipulated in place.
>>> rho_cut.shape
(100,100)
>>> rho_cut.span
2
>>> rho_cut.grid.lattice
array([[ 1.57225214, -6.68207161, -0.43149218],
[-1.75366585, -3.04623853, 0.8479004 ],
[-7.02978121, 0.97509868, -0.30802502]])
# plot_cut is itself a Grid_Function_Base instance, and it can be either exported to an xsf file (see next session)
# or its values can be analized/manipulated in place.
>>> plot_cut.values.shape
(200, 200)
# Fourier transform of the DirectField
>>> rho_g = rho.fft()
>>> type(rho_g)
pbcpy.field.ReciprocalField
ReciprocalField 方法
ifft:计算自变量的逆傅里叶变换,并返回一个 DirectField 实例,其中包含适当的 DirectGrid
# inv fft:
# recall that rho_g = fft(rho)
>>> rho1 = rho_g.ifft()
>>> type(rho1)
pbcpy.field.DirectField
>>> rho1.grid == rho.grid
True
>>> np.isclose(rho1, rho).all()
True
# as expected ifft(fft(rho)) = rho
System 类
System 类仅包含一个 DirectCell(或 DirectGrid),一组原子 ions 和一个 DirectField
System 属性
名称 : 任意名称
离子 : 原子集合及其坐标
晶胞 : 系统的单位晶胞(DirectCell 或 DirectGrid)
场 : 可选的 DirectField 对象。
pbcarray 类
pbcarray 是 numpy.ndarray 的子类,适合表示周期性量,通过包含强大的封装功能。 pbcarray 可以为任何秩,并且可以进行自由切片。
# 1D example, but it is valid for any rank.
>>> from pbcpy.base import pbcarray
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0,2*np.pi, endpoint=False, num=100)
>>> y = np.sin(x)
>>> y_pbc = pbcarray(y)
>>> y_pbc.shape
(100,) # y_pbc only has 100 elements, but we can freely do operations such as:
>>> plt.plot(y_pbc[-100:200]) # and get the expected result
文件格式
PP 类
pbcpy 可以将 Quantum Espresso 后处理 .pp 文件读取到 System 对象中。
>>> water_dimer = PP(filepp='/path/to/density.pp').read()
# the output of PP.read() is a System object.
XSF 类
pbcpy 可以将 System 对象写入 XCrySDen 的 .xsf 文件。
>>> XSF(filexsf='/path/to/output.xsf').write(system=water_dimer)
# an optional field parameter can be passed to XSF.write() in order to override the DirectField in system.
# This is especially useful if one wants to output one system and an arbitrary cut of the grid,
# such as the one we generated earlier
>>> XSF(filexsf='/path/to/output.xsf').write(system=water_dimer, field=rho_cut)
项目详情
pbcpy-0.2.7.tar.gz 的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 78d53b63f573aab7cb88171c3323b55cb873b51b084d0fd17a5b298ff916504f |
|
MD5 | c061838c0bbe619e014d1fbf9431b459 |
|
BLAKE2b-256 | 195a8f868af17aaf4d4862769bc319c53eb3fda318ac353c173ac55b4f8612ce |