为obspy提供HDF5读写支持
项目描述
保存并写入OBSPy流到hdf5文件。如果它们是数字、字符串、UTCDateTime对象或NumPy数组,则保留统计属性。它可以作为obspy的读取函数的插件来读取整个hdf5文件。或者,您可以使用iterh5函数遍历hdf5文件中的轨迹。
安装
安装h5py和obspy。然后使用pip通过以下方式安装obspyh5:
pip install obspyh5
使用conda,可以将包安装到一个新的环境中:
conda config --add channels conda-forge conda create -n obsh5 numpy obspy h5py conda activate obsh5 pip install obspyh5
用法
使用obspy插件的基本示例
>>> from obspy import read >>> stream = read() # load example stream >>> print(stream) ..3 Trace(s) in Stream: BW.RJOB..EHZ | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples BW.RJOB..EHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples BW.RJOB..EHE | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples >>> stream.write('test.h5', 'H5') # declare 'H5' as format >>> print(read('test.h5')) # order is preserved only for default index 3 Trace(s) in Stream: BW.RJOB..EHZ | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples BW.RJOB..EHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples BW.RJOB..EHE | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
示例遍历大型hdf5文件中的轨迹。每次迭代后,轨迹不会保留在内存中,因此在PC上处理大型hdf5文件时不会出现问题。
>>> from obspyh5 import iterh5 >>> for trace in iterh5('huge_in.h5') trace.do_something() trace.write('huge_out.h5', 'H5', mode='a') # append mode to write into file
替代索引
obspyh5支持替代索引。
>>> from obspy import read >>> import obspyh5 >>> print(obspyh5._INDEX) # default index waveforms/{trc_num:03d}_{id}_{starttime.datetime:%Y-%m-%dT%H:%M:%S}_{duration:.1f}s
索引在写入轨迹时由stats对象和轨迹号填充,例如。
'waveforms/000_BW.RJOB..EHZ/2009-08-24T00:20:03_30.0s'
要更改索引,请使用set_index。
>>> obspyh5.set_index('flat') # flat index wihtout trace number, writing a trace with the same metadata twice will overwrite >>> obspyh5.set_index('nested') # nested index >>> obspyh5.set_index('xcorr') # xcorr indexing >>> obspyh5.set_index('waveforms/{network}.{station}/{distance}') # custom indexing >>> obspyh5.set_index('waveforms/{trc_num:03d}_{station}') # use of the trace number >>> obspyh5.set_index() # default index
当使用“xcorr”索引时,stats需要第一个和第二个台站的第一和第二站点的“network1”、“station1”、“location1”、“channel1”、“network2”、“station2”、“location2”和“channel2”条目。例如。
>>> from obspy import read >>> import obspyh5 >>> obspyh5.set_index('xcorr') # activate xcorr indexing >>> stream = read() >>> for i, tr in enumerate(stream): # manipulate stats object station1, station2 = 'ST1', 'ST%d' % i channel1, channel2 = 'HHZ', 'HHN' s = tr.stats # we manipulate seed id so that important information gets # printed by obspy s.network, s.station = s.station1, s.channel1 = station1, channel1 s.location, s.channel = s.station2, s.channel2 = station2, channel2 s.network1 = s.network2 = 'BW' s.location1 = s.location2 = '' >>> print(stream) ST1.HHZ.ST0.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples ST1.HHZ.ST1.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples ST1.HHZ.ST2.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples >>> stream.write('test_xcorr.h5', 'H5') >>> print(read('test_xcorr.h5')) ST1.HHZ.ST0.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples ST1.HHZ.ST1.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples ST1.HHZ.ST2.HHN | 2009-08-24T00:20:03.000000Z - 2009-08-24T00:20:32.990000Z | 100.0 Hz, 3000 samples
注意
有关更全面的方法,请参阅ASDF。
用例:晚于鄂霍次克半岛尾波的相关性(notebook)。
项目详情
关闭
obspyh5-0.6.0.tar.gz的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | ae7e1714b69f03fa39714dbe89adfefd41a7227cfaefb22db9c3e5cae63a55b0 |
|
MD5 | 127d141770541ed219a576c4d3dbc6be |
|
BLAKE2b-256 | 3c72e86822f810e5efebbba512d3b1ef5b6610e89c9160e7975414bdabaf6f3b |