跳转到主要内容

创建向量化gymnasium环境的包装器。

项目描述

Ninetails

创建向量化gymnasium环境的包装器。

安装

pip3安装ninetails

使用方法

import gymnasium as gym
import numpy as np

from ninetails import SubProcessVectorGymnasiumEnv


def main() -> None:
    """main.

    Returns:
        None:
    """
    # define your environment using a function that returns the environment here
    env_fns = [lambda i=i: gym.make("MountainCarContinuous-v0") for i in range(4)]

    # create a vectorized environment
    # `strict` is useful here for debugging
    vec_env = SubProcessVectorGymnasiumEnv(env_fns=env_fns, strict=True)

    # define our initial termination and trunction arrays
    terminations, truncations = np.array([False]), np.array([False])

    # reset follows the same signature as a Gymnasium environment
    observations, infos = vec_env.reset(seed=42)

    for step_count in range(5000):
        # sample an action, this is an np.ndarray of [num_envs, *env.action_space.shape]
        actions = vec_env.sample_actions()

        # similarly, the step function follows the same signature as a Gymnasium environment with the following shapes
        # observations: np.ndarray of shape [num_envs, *env.observation_space.shape]
        # rewards: np.ndarray of shape [num_envs, 1]
        # terminations: np.ndarray of shape [num_envs, 1]
        # truncations: np.ndarray of shape [num_envs, 1]
        # infos: tuple[dict[str, Any]]
        observations, rewards, terminations, truncations, infos = vec_env.step(actions)

        # to reset underlying environments
        done_ids = set(terminations.nonzero()[0].tolist() + truncations.nonzero()[0].tolist())
        for id in done_ids:
            # warning, you'll have to handle starting observations yourself here
            reset_obs, reset_info = vec_env.reset(id)


if __name__ == "__main__":
    main()

项目详情


下载文件

下载适合您平台的文件。如果您不确定选择哪个,请了解更多关于安装包的信息。

源分发

ninetails-0.0.9.tar.gz (8.1 kB 查看哈希值)

上传时间:

构建分发

ninetails-0.0.9-py3-none-any.whl (9.0 kB 查看哈希值)

上传于 Python 3

由以下支持