Skip to main content
2025 Python Packaging Survey is now live!  Take the survey now

Decomposition of word embeddings (word vectors) into qualities ('ness'es).

Project description

nessvec

Install from Source (recommended)

Clone the repository with all the source code and data:

$ git clone git@gitlab.com:tangibleai/nessvec
$ cd nessvec

Create a conda environment and install the dependencies:

$ conda create -n nessvec 'python==3.9.7'
$ conda env update -n nessvec -f scripts/environment.yml
$ pip install -e .

Install from PyPi (only tested on Linux)

$ pip install nessvec

Get Started

>>> from nessvec.util import load_glove
>>> w2v = load_glove()
>>> seattle = w2v['seattle']
>>> seattle
array([-2.7303e-01,  8.5872e-01,  1.3546e-01,  8.3849e-01, ...
>>> portland = w2v['portland']
>>> portland
array([-0.78611  ,  1.2758   , -0.0036066,  0.54873  , -0.31474  ,...
>>> len(portland)
50
>>> from numpy.linalg import norm
>>> norm(portland)
4.417...
>>> portland.std()
0.615...
>>> cosine_similarity(seattle, portland)
0.84...
>>> cosine_similarity(portland, seattle)
0.84...

>>> from nessvec.util import cosine_similarity
>>> cosine_similarity(w2v['los_angeles'], w2v['mumbai'])
.5

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page