具有有意义的维度的词嵌入,以实现更好的可解释性。
项目描述
nessvec
从源代码安装(推荐)
克隆包含所有源代码和数据的存储库
$ git clone git@gitlab.com:tangibleai/nessvec
$ cd nessvec
创建conda环境并安装依赖项
$ conda create -n nessvec 'python==3.9.7'
$ conda env update -n nessvec -f scripts/environment.yml
$ pip install -e .
从PyPi安装(仅在Linux上测试)
$ pip install nessvec
开始使用
>>> from nessvec.util import load_glove
>>> w2v = load_glove()
>>> seattle = w2v['seattle']
>>> seattle
array([-2.7303e-01, 8.5872e-01, 1.3546e-01, 8.3849e-01, ...
>>> portland = w2v['portland']
>>> portland
array([-0.78611 , 1.2758 , -0.0036066, 0.54873 , -0.31474 ,...
>>> len(portland)
50
>>> from numpy.linalg import norm
>>> norm(portland)
4.417...
>>> portland.std()
0.615...
>>> cosine_similarity(seattle, portland)
0.84...
>>> cosine_similarity(portland, seattle)
0.84...
>>> from nessvec.util import cosine_similarity
>>> cosine_similarity(w2v['los_angeles'], w2v['mumbai'])
.5
关闭
nessvec-0.1.16.tar.gz的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 8e435a4c116f8878b959120e385a8103bb76db7cb01d21ae3432e0a9482f4338 |
|
MD5 | f2f140db89336c7eba193a189f3d015d |
|
BLAKE2b-256 | 59d3054c905eb1404311a8f23022e5c1df209fa48b6b97a40c2a378164b57448 |
关闭
nessvec-0.1.16-py3-none-any.whl的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 35b28cb0ef873c83479b469a47547d05882dce0e1d5cd2b05539b4dc1ce75010 |
|
MD5 | 534d53f5d6bfd45026f94a12d72cd9d1 |
|
BLAKE2b-256 | 49666b1c13ed2c8c414d31656cf655161689632d001ce45a2399c6fef2eacbca |