mlprodict 0.8.1863
pip install mlprodict==0.8.1863
Released:
Python Runtime for ONNX models, other helpers to convert machine learned models in C++.
Navigation
Unverified details
These details have not been verified by PyPIProject links
Meta
- License: MIT License (MIT)
- Author: Xavier Dupré
- Tags mlprodict , Xavier Dupré , onnx , scikit-learn , production , machine learning
Classifiers
- Development Status
- Intended Audience
- License
- Operating System
- Programming Language
- Topic
Project description
mlprodict
mlprodict was initially started to help implementing converters to ONNX. The main features is a python runtime for ONNX (class OnnxInference), visualization tools (see Visualization), and a numpy API for ONNX). The package also provides tools to compare predictions, to benchmark models converted with sklearn-onnx.
import numpy
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_iris
from mlprodict.onnxrt import OnnxInference
from mlprodict.onnxrt.validate.validate_difference import measure_relative_difference
from mlprodict import __max_supported_opset__, get_ir_version
iris = load_iris()
X = iris.data[:, :2]
y = iris.target
lr = LinearRegression()
lr.fit(X, y)
# Predictions with scikit-learn.
expected = lr.predict(X[:5])
print(expected)
# Conversion into ONNX.
from mlprodict.onnx_conv import to_onnx
model_onnx = to_onnx(lr, X.astype(numpy.float32),
black_op={'LinearRegressor'},
target_opset=__max_supported_opset__)
print("ONNX:", str(model_onnx)[:200] + "\n...")
# Predictions with onnxruntime
model_onnx.ir_version = get_ir_version(__max_supported_opset__)
oinf = OnnxInference(model_onnx, runtime='onnxruntime1')
ypred = oinf.run({'X': X[:5].astype(numpy.float32)})
print("ONNX output:", ypred)
# Measuring the maximum difference.
print("max abs diff:", measure_relative_difference(expected, ypred['variable']))
# And the python runtime
oinf = OnnxInference(model_onnx, runtime='python')
ypred = oinf.run({'X': X[:5].astype(numpy.float32)},
verbose=1, fLOG=print)
print("ONNX output:", ypred)
Installation
Installation from pip should work unless you need the latest development features.
pip install mlprodict
The package includes a runtime for ONNX. That’s why there is a limited number of dependencies. However, some features relies on sklearn-onnx, onnxruntime, scikit-learn. They can be installed with the following instructions:
pip install mlprodict[all]
The code is available at GitHub/mlprodict and has online documentation.
Project details
Unverified details
These details have not been verified by PyPIProject links
Meta
- License: MIT License (MIT)
- Author: Xavier Dupré
- Tags mlprodict , Xavier Dupré , onnx , scikit-learn , production , machine learning
Classifiers
- Development Status
- Intended Audience
- License
- Operating System
- Programming Language
- Topic
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters https://pypi.org/project/mlprodict/0.8.1863/#files
Showing 11 of 11 files.
Uploaded
CPython 3.10Windows x86-64
Uploaded
CPython 3.10manylinux: glibc 2.24+ x86-64
Uploaded
CPython 3.10macOS 10.13+ x86-64
Uploaded
CPython 3.9manylinux: glibc 2.17+ x86-64
Uploaded
CPython 3.9macOS 10.13+ x86-64
Uploaded
CPython 3.8manylinux: glibc 2.17+ x86-64
Uploaded
CPython 3.8macOS 10.13+ x86-64
Uploaded
CPython 3.7mWindows x86-64
Uploaded
CPython 3.7mmanylinux: glibc 2.17+ x86-64
File details
Details for the file mlprodict-0.8.1863.tar.gz.
File metadata
- Download URL: mlprodict-0.8.1863.tar.gz
- Upload date:
- Size: 825.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
9377b4a33bc772b0df4ebf25fb54a0512747a43b0663c47b9ee1e59c1293bebd
|
|
| MD5 |
e07ee2db71aba83b44d2bc3a185ba51e
|
|
| BLAKE2b-256 |
9dbaffa19c8400b43012766943b6291beb1372e4289c8f5d375f7fe1a5538b2c
|
File details
Details for the file mlprodict-0.8.1863-cp310-cp310-win_amd64.whl.
File metadata
- Download URL: mlprodict-0.8.1863-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 2.6 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
580fa4d0b572ccfc0bc0b594a887178bbe940a93a931437b2eacd9fa366b7d19
|
|
| MD5 |
2b4a828fab9bc754e6652b3d3d3face1
|
|
| BLAKE2b-256 |
ab0b521249c507befad727dadbd37910a86ecbe30f6f35f9a58a14cdc90ba863
|
File details
Details for the file mlprodict-0.8.1863-cp310-cp310-manylinux_2_24_x86_64.whl.
File metadata
- Download URL: mlprodict-0.8.1863-cp310-cp310-manylinux_2_24_x86_64.whl
- Upload date:
- Size: 26.9 MB
- Tags: CPython 3.10, manylinux: glibc 2.24+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
9373afba36feb01ea229a2e60bcd5973c0d49ae91d54ca7275caf5df4bfca218
|
|
| MD5 |
82976e323a50d69a2396489a38c7253c
|
|
| BLAKE2b-256 |
23774cbff33175213e307578a360144b81f8899c8d9bfba6700128416f2373b3
|
File details
Details for the file mlprodict-0.8.1863-cp310-cp310-macosx_10_13_x86_64.whl.
File metadata
- Download URL: mlprodict-0.8.1863-cp310-cp310-macosx_10_13_x86_64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.10, macOS 10.13+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a495d14fcb041f4ae71cb2e0eb947340f2d47bb84e2df954f41c2392e4e88acd
|
|
| MD5 |
64059bea220d8e76cb629732c0965b2b
|
|
| BLAKE2b-256 |
fd2363511271eb72acc58e69960ba2d6d82df24abb9c696551d40a273ff13142
|
File details
Details for the file mlprodict-0.8.1863-cp39-cp39-win_amd64.whl.
File metadata
- Download URL: mlprodict-0.8.1863-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 2.6 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a113573b9e4be357d02ec58ada3dc641fdbcc0663cc94dee4915bba12fb43064
|
|
| MD5 |
fbb8ce965c09e591068460e2107ab83c
|
|
| BLAKE2b-256 |
8de00f5c7b1b265380719e08ade87e377c0aedfd2260ebc1c26955a418b662b7
|
File details
Details for the file mlprodict-0.8.1863-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.
File metadata
- Download URL: mlprodict-0.8.1863-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 39.2 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d3ba491f6c370006945ae45817f24553fefc5a82ad4d43a401e73ffed9addae5
|
|
| MD5 |
dc9ac9bd0fbcc5050031509dbbbbb043
|
|
| BLAKE2b-256 |
f3d3ff36ef48689f97ae444eb8a3339de4b3ca67ea72a9e6619890ab40961d12
|
File details
Details for the file mlprodict-0.8.1863-cp39-cp39-macosx_10_13_x86_64.whl.
File metadata
- Download URL: mlprodict-0.8.1863-cp39-cp39-macosx_10_13_x86_64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.9, macOS 10.13+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
8a94f54f10f6cb1acee7b56a050a399953bfec0ea8b47aac4173dd078fff358a
|
|
| MD5 |
336f293cab5f9887f78f9a957c18ff89
|
|
| BLAKE2b-256 |
c330026cebc5e77d257985693247eca3c5a6052fb8f1b944b5d24d85bec17593
|
File details
Details for the file mlprodict-0.8.1863-cp38-cp38-win_amd64.whl.
File metadata
- Download URL: mlprodict-0.8.1863-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 2.6 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
2ed0ccaa6755a09ce54d08b19c7f660d203e8d932fd19905de127823f9bf1ebf
|
|
| MD5 |
233e4962574b0317fd4e58cd1c0cc8fc
|
|
| BLAKE2b-256 |
0dcefdc98eea27733f0bb0966ce642943c08ed073cec4e2714690f6d15a88e62
|
File details
Details for the file mlprodict-0.8.1863-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.
File metadata
- Download URL: mlprodict-0.8.1863-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 39.2 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
075b7348703f45ff99a7ff523557ab7d4be58ad5b2d1d0fa4e58743ac8d909c2
|
|
| MD5 |
d8e6e310117957eaaed022c554aebfab
|
|
| BLAKE2b-256 |
3dc9217a86005bf9316a305bf60b1313c3f4ad64f65233c75103a4ecaac8cf71
|
File details
Details for the file mlprodict-0.8.1863-cp38-cp38-macosx_10_13_x86_64.whl.
File metadata
- Download URL: mlprodict-0.8.1863-cp38-cp38-macosx_10_13_x86_64.whl
- Upload date:
- Size: 3.6 MB
- Tags: CPython 3.8, macOS 10.13+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
40d106aa9514ad16fdb65d3748b877edba2b191fa698d006a618b111054e2909
|
|
| MD5 |
564879e3484d4633d7241dc825173445
|
|
| BLAKE2b-256 |
ab6a8f4c909a159c510958bb80469271f8295a51471c732914e8c72188e9775e
|
File details
Details for the file mlprodict-0.8.1863-cp37-cp37m-win_amd64.whl.
File metadata
- Download URL: mlprodict-0.8.1863-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 2.6 MB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
f5f7a9785a2aacbe69da9ad63c64a3228ef208003b8a2f038c25e636d2ad2536
|
|
| MD5 |
afff3d3be0f8ef8eb9477ec0379f1f02
|
|
| BLAKE2b-256 |
afe4e3a917acfa9f5645311ef74b9ad1004255babaa4cbbb4b53b24b2c40ccec
|
File details
Details for the file mlprodict-0.8.1863-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.
File metadata
- Download URL: mlprodict-0.8.1863-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 40.4 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
9dfd41b22b4aabdcc3d6d37ef65f6047366e7b53d5c727cce175ecbe9f981c82
|
|
| MD5 |
c5b2afabe7145280512c68041dc062bf
|
|
| BLAKE2b-256 |
c80eb98e582b86a65a78cdf8db864c3db9fef9db4dd9bf16d38467aa4ef75596
|