Skip to main content

Docling LangChain integration

Project description

Docling LangChain integration

PyPI version PyPI - Python Version uv Code style: black Imports: isort Pydantic v2 pre-commit License MIT

A Docling integration for LangChain.

Installation

Simply install langchain-docling from your package manager, e.g. pip:

pip install langchain-docling

Development setup

To develop for Docling Core, you need Python >=3.9 <=3.13 and uv. You can then install from your local clone's root dir:

uv sync

Usage

Basic usage

Basic usage of DoclingLoader looks as follows:

from langchain_docling import DoclingLoader

FILE_PATH = ["https://arxiv.org/pdf/2408.09869"]  # Docling Technical Report

loader = DoclingLoader(file_path=FILE_PATH)
docs = loader.load()

Advanced usage

When initializing a DoclingLoader, you can use the following parameters:

  • file_path: source as single str (URL or local file) or iterable thereof
  • converter (optional): any specific Docling converter instance to use
  • convert_kwargs (optional): any specific kwargs for conversion execution
  • export_type (optional): export mode to use: ExportType.DOC_CHUNKS (default) or ExportType.MARKDOWN
  • md_export_kwargs (optional): any specific Markdown export kwargs (for Markdown mode)
  • chunker (optional): any specific Docling chunker instance to use (for doc-chunk mode)
  • meta_extractor (optional): any specific metadata extractor to use

Docs and examples

For more details and usage examples, check out this page.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page