用于Kubernetes平台配置的库和生成的proto。
项目描述
Kubernetes平台特定功能
The kfp-kubernetes
Python库允许使用Kubernetes特定功能编写Kubeflow流水线。这些功能由默认KFP开源BE支持。具体来说,kfp-kubernetes
库支持编写使用
安装
可以使用kfp
SDK额外依赖项将kfp-kubernetes
包安装为kfp==2.x.x
pip install kfp[kubernetes] --pre
或独立安装
pip install kfp-kubernetes
示例用法
机密信息:作为环境变量
from kfp import dsl
from kfp import kubernetes
@dsl.component
def print_secret():
import os
print(os.environ['SECRET_VAR'])
@dsl.pipeline
def pipeline():
task = print_secret()
kubernetes.use_secret_as_env(task,
secret_name='my-secret',
secret_key_to_env={'password': 'SECRET_VAR'})
机密信息:作为挂载卷
from kfp import dsl
from kfp import kubernetes
@dsl.component
def print_secret():
with open('/mnt/my_vol') as f:
print(f.read())
@dsl.pipeline
def pipeline():
task = print_secret()
kubernetes.use_secret_as_volume(task,
secret_name='my-secret',
mount_path='/mnt/my_vol')
机密信息:作为挂载卷的可选源
from kfp import dsl
from kfp import kubernetes
@dsl.component
def print_secret():
with open('/mnt/my_vol') as f:
print(f.read())
@dsl.pipeline
def pipeline():
task = print_secret()
kubernetes.use_secret_as_volume(task,
secret_name='my-secret',
mount_path='/mnt/my_vol'
optional=True)
ConfigMap:作为环境变量
from kfp import dsl
from kfp import kubernetes
@dsl.component
def print_config_map():
import os
print(os.environ['CM_VAR'])
@dsl.pipeline
def pipeline():
task = print_config_map()
kubernetes.use_config_map_as_env(task,
config_map_name='my-cm',
config_map_key_to_env={'foo': 'CM_VAR'})
ConfigMap:作为挂载卷
from kfp import dsl
from kfp import kubernetes
@dsl.component
def print_config_map():
with open('/mnt/my_vol') as f:
print(f.read())
@dsl.pipeline
def pipeline():
task = print_config_map()
kubernetes.use_config_map_as_volume(task,
config_map_name='my-cm',
mount_path='/mnt/my_vol')
ConfigMap:作为挂载卷的可选源
from kfp import dsl
from kfp import kubernetes
@dsl.component
def print_config_map():
with open('/mnt/my_vol') as f:
print(f.read())
@dsl.pipeline
def pipeline():
task = print_config_map()
kubernetes.use_config_map_as_volume(task,
config_map_name='my-cm',
mount_path='/mnt/my_vol',
optional=True)
持久卷声明:动态创建PVC,挂载然后删除
from kfp import dsl
from kfp import kubernetes
@dsl.component
def make_data():
with open('/data/file.txt', 'w') as f:
f.write('my data')
@dsl.component
def read_data():
with open('/reused_data/file.txt') as f:
print(f.read())
@dsl.pipeline
def my_pipeline():
pvc1 = kubernetes.CreatePVC(
# can also use pvc_name instead of pvc_name_suffix to use a pre-existing PVC
pvc_name_suffix='-my-pvc',
access_modes=['ReadWriteOnce'],
size='5Gi',
storage_class_name='standard',
)
task1 = make_data()
# normally task sequencing is handled by data exchange via component inputs/outputs
# but since data is exchanged via volume, we need to call .after explicitly to sequence tasks
task2 = read_data().after(task1)
kubernetes.mount_pvc(
task1,
pvc_name=pvc1.outputs['name'],
mount_path='/data',
)
kubernetes.mount_pvc(
task2,
pvc_name=pvc1.outputs['name'],
mount_path='/reused_data',
)
# wait to delete the PVC until after task2 completes
delete_pvc1 = kubernetes.DeletePVC(
pvc_name=pvc1.outputs['name']).after(task2)
持久卷声明:创建PVC并与您的Pod的生命周期绑定
from kfp import dsl
from kfp import kubernetes
@dsl.component
def make_data():
with open('/data/file.txt', 'w') as f:
f.write('my data')
@dsl.pipeline
def my_pipeline():
task1 = make_data()
# note that the created pvc will be autoamatically cleaned up once pod disappeared and cannot be shared between pods
kubernetes.add_ephemeral_volume(
task1,
volume_name="my-pvc",
mount_path="/data",
access_modes=['ReadWriteOnce'],
size='5Gi',
)
Pod元数据:向容器Pod的定义添加Pod标签和注解
from kfp import dsl
from kfp import kubernetes
@dsl.component
def comp():
pass
@dsl.pipeline
def my_pipeline():
task = comp()
kubernetes.add_pod_label(
task,
label_key='kubeflow.com/kfp',
label_value='pipeline-node',
)
kubernetes.add_pod_annotation(
task,
annotation_key='run_id',
annotation_value='123456',
)
Kubernetes字段:使用Kubernetes字段路径作为环境变量
from kfp import dsl
from kfp import kubernetes
@dsl.component
def comp():
pass
@dsl.pipeline
def my_pipeline():
task = comp()
kubernetes.use_field_path_as_env(
task,
env_name='KFP_RUN_NAME',
field_path="metadata.annotations['pipelines.kubeflow.org/run_name']"
)
超时:以秒为单位设置由Pod规范中的activeDeadlineSeconds定义的超时时间
from kfp import dsl
from kfp import kubernetes
@dsl.component
def comp():
pass
@dsl.pipeline
def my_pipeline():
task = comp()
kubernetes.set_timeout(task, 20)
ImagePullPolicy:其中之一“始终”、“从不”、“如果不存在”。
from kfp import dsl
from kfp import kubernetes
@dsl.component
def simple_task():
print("hello-world")
@dsl.pipeline
def pipeline():
task = simple_task()
kubernetes.set_image_pull_policy(task, "Always")
项目详情
关闭
kfp-kubernetes-1.3.0.tar.gz的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | f0fb5f70c77d0948cba0a4ef7c5820811e9de6b2c6251fae6e0291431e994e64 |
|
MD5 | 832083dab62a1de3296a0a592eb8678e |
|
BLAKE2b-256 | d0253dc6bbd780802f3842e568b3c4428359ddaba616b5648a410d40fa447263 |