Skip to main content
2025 Python Packaging Survey is now live!  Take the survey now

Lazily one-hot encoding bed sequences using Keras Sequence.

Project description

Travis CI build SonarCloud Quality SonarCloud Maintainability Codacy Maintainability Maintainability Pypi project Pypi total project downloads

Lazily one-hot encoding bed sequences using Keras Sequence.

How do I install this package?

As usual, just download it using pip:

pip install keras_bed_sequence

Tests Coverage

Since some software handling coverages sometime get slightly different results, here’s three of them:

Coveralls Coverage SonarCloud Coverage Code Climate

Usage examples

The following examples are tested within the package test suite.

Classification task example

Let’s start by building an extremely simple classification task model:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from keras_mixed_sequence import MixedSequence

model = Sequential([
    Flatten(),
    Dense(1)
])
model.compile(
    optimizer="nadam",
    loss="MSE"
)

We then proceed to load the training data into Keras Sequences, using in particular a MixedSequence object:

import numpy as np
from keras_mixed_sequence import MixedSequence
from keras_bed_sequence import BedSequence

batch_size = 32
bed_sequence = BedSequence(
    "hg19",
    "path/to/bed/files.bed",
    batch_size
)
y = the_output_values
mixed_sequence = MixedSequence(
    x=bed_sequence,
    y=y,
    batch_size=batch_size
)

Finally we can proceed to use the obtained MixedSequence to train our model:

model.fit_generator(
    mixed_sequence,
    steps_per_epoch=mixed_sequence.steps_per_epoch,
    epochs=2,
    verbose=0,
    shuffle=True
)

Auto-encoding task example

Let’s start by building an extremely simple auto-encoding task model:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Reshape, Conv2DTranspose

model = Sequential([
    Reshape((200, 4, 1)),
    Conv2D(16, kernel_size=3, activation="relu"),
    Conv2DTranspose(1, kernel_size=3, activation="relu"),
    Reshape((-1, 200, 4))
])
model.compile(
    optimizer="nadam",
    loss="MSE"
)

We then proceed to load the training data into Keras Sequences, using in particular a MixedSequence object:

import numpy as np
from keras_mixed_sequence import MixedSequence
from keras_bed_sequence import BedSequence

batch_size = 32
bed_sequence = BedSequence(
    "hg19",
    "path/to/bed/files.bed",
    batch_size
)
mixed_sequence = MixedSequence(
    x=bed_sequence,
    y=bed_sequence,
    batch_size=batch_size
)

Finally we can proceed to use the obtained MixedSequence to train our model:

model.fit_generator(
    mixed_sequence,
    steps_per_epoch=mixed_sequence.steps_per_epoch,
    epochs=2,
    verbose=0,
    shuffle=True
)

Multi-task example (classification + auto-encoding)

Let’s start by building an extremely simple multi-tasks model:

from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Conv2D, Reshape, Flatten, Conv2DTranspose, Input

inputs = Input(shape=(200, 4))

flattened = Flatten()(inputs)

output1 = Dense(
    units=1,
    activation="relu",
    name="output1"
)(flattened)

hidden = Reshape((200, 4, 1))(inputs)
hidden = Conv2D(16, kernel_size=3, activation="relu")(hidden)
hidden = Conv2DTranspose(1, kernel_size=3, activation="relu")(hidden)
output2 = Reshape((200, 4), name="output2")(hidden)

model = Model(
    inputs=inputs,
    outputs=[output1, output2],
    name="my_model"
)

model.compile(
    optimizer="nadam",
    loss="MSE"
)

We then proceed to load the training data into Keras Sequences, using in particular a MixedSequence object:

import numpy as np
from keras_mixed_sequence import MixedSequence
from keras_bed_sequence import BedSequence

batch_size = 32
bed_sequence = BedSequence(
    "hg19",
    "{cwd}/test.bed".format(
        cwd=os.path.dirname(os.path.abspath(__file__))
    ),
    batch_size
)
y = np.random.randint(
    2,
    size=(bed_sequence.samples_nuber, 1)
)
mixed_sequence = MixedSequence(
    bed_sequence,
    {
        "output1": y,
        "output2": bed_sequence
    },
    batch_size
)

Finally we can proceed to use the obtained MixedSequence to train our model:

model.fit_generator(
    mixed_sequence,
    steps_per_epoch=mixed_sequence.steps_per_epoch,
    epochs=2,
    verbose=0,
    shuffle=True
)

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page