跳转到主要内容

特征点可用于在执行使用RANSAC远程模块的配准时获取显著点。PointFeature类是主要的驱动程序,它以PointSet作为参数。请参阅文档以获取详细说明和示例用法:https://github.com/InsightSoftwareConsortium/ITKFPFH

项目描述

ITKFPFH

概述

用于计算点集FPFH特征的模块。以下为示例用法:

# normal_pointset is ITK Pointset which contains normal vector for each point
# pointset is ITK Pointset which contains the input points for which feature needs to be calculated

# normal_np is numpy array of shape [Nx3]
# fpfh_feature is numpy array of shape [33xN]
# 25 is the radius and 100 is the maximum number of neighbors

pointset = itk.PointSet[itk.F, 3].New()
normal_pointset = itk.PointSet[itk.F, 3].New()

normal_pointset.SetPoints(itk.vector_container_from_array(normal_np.flatten()))
fpfh = itk.Fpfh.PointFeature.MF3MF3.New()
fpfh.ComputeFPFHFeature(pointset, normal_pointset, 25, 100)
fpfh_feature = fpfh.GetFpfhFeature()
fpfh_feature = itk.array_from_vector_container(fpfh_feature)
fpfh_feature = np.reshape(fpfh_feature, [33, pointset.GetNumberOfPoints()])

可以使用以下代码获取法线:

def getnormals_pca(inputPoints):
    import vtk
    from vtk.util import numpy_support
    meshPoints = numpy_to_vtk_polydata(inputPoints)
    normals = vtk.vtkPCANormalEstimation()
    normals.SetSampleSize(30)
    normals.SetFlipNormals(True)
    #normals.SetNormalOrientationToPoint()
    normals.SetNormalOrientationToGraphTraversal()
    normals.SetInputData(meshPoints)
    normals.Update()
    as_numpy = numpy_support.vtk_to_numpy(normals.GetOutput().GetPointData().GetArray(0))
    return as_numpy

项目详情


下载文件

下载适用于您平台的文件。如果您不确定选择哪个,请了解有关安装包的更多信息。

源分发

本发布版本没有可用的源分发文件。请参阅有关生成分发存档的教程。

构建分发

itk_fpfh-0.2.0-cp311-abi3-win_amd64.whl (461.4 kB 查看哈希值)

上传时间 CPython 3.11+ Windows x86-64

itk_fpfh-0.2.0-cp311-abi3-manylinux_2_28_x86_64.whl (426.7 kB 查看哈希值)

上传时间 CPython 3.11+ manylinux: glibc 2.28+ x86-64

itk_fpfh-0.2.0-cp311-abi3-manylinux_2_28_aarch64.whl (397.0 kB 查看哈希值)

上传时间 CPython 3.11+ manylinux: glibc 2.28+ ARM64

itk_fpfh-0.2.0-cp311-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB 查看哈希值)

上传时间 CPython 3.11+ manylinux: glibc 2.17+ x86-64

itk_fpfh-0.2.0-cp311-abi3-manylinux2014_x86_64.whl (449.6 kB 查看哈希值)

上传时间 CPython 3.11+

itk_fpfh-0.2.0-cp311-abi3-macosx_11_0_arm64.whl (301.3 kB 查看哈希值)

上传时间 CPython 3.11+ macOS 11.0+ ARM64

itk_fpfh-0.2.0-cp311-abi3-macosx_10_9_x86_64.whl (357.2 kB 查看哈希值)

上传时间 CPython 3.11+ macOS 10.9+ x86-64

itk_fpfh-0.2.0-cp310-cp310-win_amd64.whl (461.8 kB 查看哈希值)

上传时间 CPython 3.10 Windows x86-64

itk_fpfh-0.2.0-cp310-cp310-manylinux_2_28_x86_64.whl (426.5 kB 查看哈希值)

上传于 CPython 3.10 manylinux: glibc 2.28+ x86-64

itk_fpfh-0.2.0-cp310-cp310-manylinux_2_28_aarch64.whl (397.7 kB 查看哈希值)

上传于 CPython 3.10 manylinux: glibc 2.28+ ARM64

itk_fpfh-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB 查看哈希值)

上传于 CPython 3.10 manylinux: glibc 2.17+ x86-64

itk_fpfh-0.2.0-cp310-cp310-manylinux2014_x86_64.whl (449.6 kB 查看哈希值)

上传于 CPython 3.10

itk_fpfh-0.2.0-cp310-cp310-macosx_11_0_arm64.whl (300.0 kB 查看哈希值)

上传于 CPython 3.10 macOS 11.0+ ARM64

itk_fpfh-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl (357.1 kB 查看哈希值)

上传于 CPython 3.10 macOS 10.9+ x86-64

itk_fpfh-0.2.0-cp39-cp39-win_amd64.whl (462.5 kB 查看哈希值)

上传于 CPython 3.9 Windows x86-64

itk_fpfh-0.2.0-cp39-cp39-manylinux_2_28_x86_64.whl (426.4 kB 查看哈希值)

上传于 CPython 3.9 manylinux: glibc 2.28+ x86-64

itk_fpfh-0.2.0-cp39-cp39-manylinux_2_28_aarch64.whl (397.7 kB 查看哈希值)

上传于 CPython 3.9 manylinux: glibc 2.28+ ARM64

itk_fpfh-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB 查看哈希值)

上传于 CPython 3.9 manylinux: glibc 2.17+ x86-64

itk_fpfh-0.2.0-cp39-cp39-manylinux2014_x86_64.whl (449.5 kB 查看哈希值)

上传于 CPython 3.9

itk_fpfh-0.2.0-cp39-cp39-macosx_11_0_arm64.whl (300.0 kB 查看哈希值)

上传于 CPython 3.9 macOS 11.0+ ARM64

itk_fpfh-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (357.1 kB 查看哈希值)

上传于 CPython 3.9 macOS 10.9+ x86-64

itk_fpfh-0.2.0-cp38-cp38-win_amd64.whl (488.9 kB 查看哈希值)

上传于 CPython 3.8 Windows x86-64

itk_fpfh-0.2.0-cp38-cp38-manylinux_2_28_x86_64.whl (426.4 kB 查看哈希值)

上传于 CPython 3.8 manylinux: glibc 2.28+ x86-64

itk_fpfh-0.2.0-cp38-cp38-manylinux_2_28_aarch64.whl (397.7 kB 查看哈希值)

上传于 CPython 3.8 manylinux: glibc 2.28+ ARM64

itk_fpfh-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB 查看哈希值)

上传于 CPython 3.8 manylinux: glibc 2.17+ x86-64

itk_fpfh-0.2.0-cp38-cp38-manylinux2014_x86_64.whl (449.5 kB 查看哈希值)

上传于 CPython 3.8

itk_fpfh-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl (357.3 kB 查看哈希值)

上传于 CPython 3.8 macOS 10.9+ x86-64

由以下组织支持

AWS AWS 云计算和安全赞助商 Datadog Datadog 监控 Fastly Fastly CDN Google Google 下载分析 Microsoft Microsoft PSF 赞助商 Pingdom Pingdom 监控 Sentry Sentry 错误日志 StatusPage StatusPage 状态页面