从基因-表型映射中提取进化轨迹的Python包
项目描述
gpvolve
从基因-表型映射中提取进化轨迹的Python包
一个用于模拟和分析基因型-表型空间进化的Python API。您可以使用这个库来
- 从基因型-表型映射中构建马尔可夫状态模型。
- 使用PCCA+找到代表系统亚稳态的基因型簇。
- 使用过渡路径理论计算感兴趣基因型对之间的通量和路径。
- 可视化上述所有输出。
基本示例
从基因型-表型映射中构建马尔可夫模型。
# Import base class, Transition Path Theory class and functions for building Markov Model.
from gpvolve import GenotypePhenotypeMSM, TransitionPathTheory, linear_skew, mccandlish, find_max
# Import visualization tool.
from gpvolve.visualization import plot_network
# Import GenotypePhenotypeMap class for handling genotype-phenotype data.
from gpmap import GenotypePhenotypeMap
# Helper functions.
from scipy.sparse import dok_matrix
# Genotype-phenotype map data.
wildtype = "AAA"
genotypes = ["AAA", "AAT", "ATA", "TAA", "ATT", "TAT", "TTA", "TTT"]
phenotypes = [0.8, 0.81, 0.88, 0.89, 0.82, 0.82, 0.95, 1.0]
# Instantiate Markov model class.
gpm = GenotypePhenotypeMap(wildtype=wildtype,
genotypes=genotypes,
phenotypes=phenotypes)
# Instantiate a evolutionary Markov State Model from the genotype-phenotype map.
gpmsm = GenotypePhenotypeMSM(gpm)
应用进化模型来描述基因型之间的转变。
# Map fitnesses to phenotypes.
gpmsm.apply_selection(fitness_function=linear_skew, selection_gradient=1)
# Build Markov State Model based on 'mccandlish' fixation probability function.
gpmsm.build_transition_matrix(fixation_model=mccandlish, population_size=100)
# Find global fitness peak.
fitness_peak = find_max(gpmsm=gpmsm, attribute='fitness')
计算并绘制野生型和三倍突变体之间的轨迹通量。
# Compute fluxes from wildtype to fitness peak.
fluxes = TransitionPathTheory(gpmsm, source=[0], target=[fitness_peak])
# Normalize flux.
norm_fluxes = fluxes.net_flux/fluxes.total_flux
# Plot the network and the fluxes
fig, ax = plot_network(gpmsm,
flux=dok_matrix(norm_fluxes),
edge_labels=True,
colorbar=True)
安装
从PyPI安装
pip install gpvolve
安装开发版本
git clone https://github.com/harmslab/gpvolve
cd gpvolve
pip install -e .
项目详情
下载文件
下载适合您平台的文件。如果您不确定选择哪个,请了解更多关于安装包的信息。
源分布
gpvolve-0.2.0.tar.gz (1.6 MB 查看哈希值)
构建分布
gpvolve-0.2.0-py2.py3-none-any.whl (33.0 kB 查看哈希值)
关闭
gpvolve-0.2.0.tar.gz 的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 6ee0acc929e999f52b22376f3dc51625fcedf908c78f15a580b41dd5407b271b |
|
MD5 | 4512abdc5093db89727639ddb350bd6c |
|
BLAKE2b-256 | eaff2251a47019db56b9601c6cb32c6cfdba0810dd60c8b04530ea72591fb3bf |
关闭
gpvolve-0.2.0-py2.py3-none-any.whl 的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 6085af7aa667d4f00b2553a48b386bb61d7bbf0f493675965e3182b57dd9d4ec |
|
MD5 | 480e3fc71e37f9f09d05cf493511978b |
|
BLAKE2b-256 | 55e72ed2e89ff9e1dd80c872c7eed8af2e50c02f710b85f32624fe10feee7cb0 |