MNIST models in Keras (Guild AI)
Project description
gpkg.keras.mnist
################
*MNIST models in Keras (Guild AI)*
Models
######
acgan
=====
*Auxiliary Classifier Generative Adversarial Network (ACGAN) for MNIST in
Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 100)*
**beta_1**
*Beta 1 (default is 0.5)*
**epochs**
*Number of epochs to train (default is 100)*
**lr**
*Learning rate (default is 0.0002)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_acgan.py
- https://arxiv.org/abs/1511.06434
cnn
===
*Convolutional neural network (CNN) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 12)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
denoising-autoencoder
=====================
*Denoising autoencoder for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 30)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_denoising_autoencoder.py
hierarchical-rnn
================
*Hierarchical RNN (HRNN) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 5)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_hierarchical_rnn.py
- https://arxiv.org/abs/1506.01057
- http://ieeexplore.ieee.org/document/7298714/
irnn
====
*Implementation of 'A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units' with MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 200)*
**lr**
*Learning rate (default is 1.0e-06)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_irnn.py
- http://arxiv.org/pdf/1504.00941v2.pdf
mlp
===
*Multilayer perceptron (MLP) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 20)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py
net2net
=======
*Implementation of 'Net2Net: Accelerating Learning via Knowledge Transfer'
with MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 3)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_net2net.py
- http://arxiv.org/abs/1511.05641
siamese
=======
*Siamese MLP classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 20)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_siamese.py
- http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
swwae
=====
*Stacked what-where autoencoder for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 5)*
**pool_size**
*kernel size used for the MaxPooling2D (default is 2)
Choices: [2, 3]
*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_swwae.py
- https://arxiv.org/abs/1311.2901v3
- https://arxiv.org/abs/1506.02351v8
_check
======
Operations
^^^^^^^^^^
acgan
-----
all
---
cnn
---
denoising-autoencoder
---------------------
hierarchical-rnn
----------------
irnn
----
mlp
---
net2net
-------
siamese
-------
swwae
-----
################
*MNIST models in Keras (Guild AI)*
Models
######
acgan
=====
*Auxiliary Classifier Generative Adversarial Network (ACGAN) for MNIST in
Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 100)*
**beta_1**
*Beta 1 (default is 0.5)*
**epochs**
*Number of epochs to train (default is 100)*
**lr**
*Learning rate (default is 0.0002)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_acgan.py
- https://arxiv.org/abs/1511.06434
cnn
===
*Convolutional neural network (CNN) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 12)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
denoising-autoencoder
=====================
*Denoising autoencoder for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 30)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_denoising_autoencoder.py
hierarchical-rnn
================
*Hierarchical RNN (HRNN) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 5)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_hierarchical_rnn.py
- https://arxiv.org/abs/1506.01057
- http://ieeexplore.ieee.org/document/7298714/
irnn
====
*Implementation of 'A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units' with MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 200)*
**lr**
*Learning rate (default is 1.0e-06)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_irnn.py
- http://arxiv.org/pdf/1504.00941v2.pdf
mlp
===
*Multilayer perceptron (MLP) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 20)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py
net2net
=======
*Implementation of 'Net2Net: Accelerating Learning via Knowledge Transfer'
with MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 3)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_net2net.py
- http://arxiv.org/abs/1511.05641
siamese
=======
*Siamese MLP classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 20)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_siamese.py
- http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
swwae
=====
*Stacked what-where autoencoder for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 5)*
**pool_size**
*kernel size used for the MaxPooling2D (default is 2)
Choices: [2, 3]
*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_swwae.py
- https://arxiv.org/abs/1311.2901v3
- https://arxiv.org/abs/1506.02351v8
_check
======
Operations
^^^^^^^^^^
acgan
-----
all
---
cnn
---
denoising-autoencoder
---------------------
hierarchical-rnn
----------------
irnn
----
mlp
---
net2net
-------
siamese
-------
swwae
-----