MLflow Google Cloud Vertex AI集成包
项目描述
MLflow插件用于Google Cloud Vertex AI
注意:该插件是实验性的,将来可能会更改或删除。
安装
python3 -m pip install google_cloud_mlflow
部署插件使用
命令行
创建部署
mlflow deployments create --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"
列出部署
mlflow deployments list --target google_cloud
获取部署
mlflow deployments get --target google_cloud --name "deployment name"
删除部署
mlflow deployments delete --target google_cloud --name "deployment name"
更新部署
mlflow deployments update --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"
预测
mlflow deployments predict --target google_cloud --name "deployment name" --input-path "inputs.json" --output-path "outputs.json
获取帮助
mlflow deployments help --target google_cloud
Python
from mlflow import deployments
client = deployments.get_deploy_client("google_cloud")
# Create deployment
model_uri = "models:/mymodel/mymodelversion"
deployment = client.create_deployment(
name="deployment name",
model_uri=model_uri,
# Config is optional
config=dict(
# Deployed model config
machine_type="n1-standard-2",
min_replica_count=None,
max_replica_count=None,
accelerator_type=None,
accelerator_count=None,
service_account=None,
explanation_metadata=None, # JSON string
explanation_parameters=None, # JSON string
# Model container image building config
destination_image_uri=None,
# Endpoint config
endpoint_description=None,
endpoint_deploy_timeout=None,
# Vertex AI config
project=None,
location=None,
encryption_spec_key_name=None,
staging_bucket=None,
)
)
# List deployments
deployments = client.list_deployments()
# Get deployment
deployments = client.get_deployment(name="deployment name")
# Delete deployment
deployment = client.delete_deployment(name="deployment name")
# Update deployment
deployment = client.create_deployment(
name="deployment name",
model_uri=model_uri,
# Config is optional
config=dict(...),
)
# Predict
import pandas
df = pandas.DataFrame([
{"a": 1,"b": 2,"c": 3},
{"a": 4,"b": 5,"c": 6}
])
predictions = client.predict("deployment name", df)
模型注册插件使用
将MLflow模型注册URI设置为某个Google Cloud Storage桶中的目录,然后使用mlflow.log_model
记录模型,就像平常一样。
mlflow.set_registry_uri("gs://<bucket>/models/")
项目详情
下载文件
下载您平台上的文件。如果您不确定选择哪个,请了解更多关于 安装包 的信息。
源分发
google_cloud_mlflow-0.0.6.tar.gz (22.7 kB 查看散列值)
构建分发
关闭
google_cloud_mlflow-0.0.6.tar.gz 的散列值
算法 | 散列摘要 | |
---|---|---|
SHA256 | ffbb0434b5103c63b470b30007e450bf49e5d9900777ce97b9ec0d780d843509 |
|
MD5 | d48fb50f8d48f25cf455abfe2c854e02 |
|
BLAKE2b-256 | 9ab82b5f7b3bd94db0b5430685c431cef3976c98943f41d61e9f546123aa8c2b |
关闭
google_cloud_mlflow-0.0.6-py3-none-any.whl 的散列值
算法 | 散列摘要 | |
---|---|---|
SHA256 | 70cdfa10ba2bb858f58373a4aeada9c4def00c105e2a45c09557b4688f299ced |
|
MD5 | 06cb93c1395b526477b3b04cc83c8bc1 |
|
BLAKE2b-256 | 419c8cecc34e594e12b5cf15ed816de02736f1e82d23b7ce72dd9fd7bda36c7f |