未知
项目描述
gdprox,近端梯度下降算法
实现了复合目标函数的近端梯度下降算法,即形式为 f(x) + g(x)
的函数,其中 f 是一个光滑函数,而 g 是一个可能非光滑的函数,对于该函数的近端算子是已知的。
此包中的主要函数是 gdprox.fmin_cgprox
。此函数与 scipy.optimize
中的函数具有相似的接口。此函数的定义如下:
def fmin_cgprox(f, fprime, g_prox, x0, rtol=1e-6,
maxiter=1000, verbose=0, default_step_size=1.):
"""
proximal gradient-descent solver for optimization problems of the form
minimize_x f(x) + g(x)
where f is a smooth function and g is a (possibly non-smooth)
function for which the proximal operator is known.
Parameters
----------
f : callable
f(x) returns the value of f at x.
f_prime : callable
f_prime(x) returns the gradient of f.
g_prox : callable of the form g_prox(x, alpha)
g_prox(x, alpha) returns the proximal operator of g at x
with parameter alpha.
x0 : array-like
Initial guess
maxiter : int
Maximum number of iterations.
verbose : int
Verbosity level, from 0 (no output) to 2 (output on each iteration)
default_step_size : float
Starting value for the line-search procedure.
Returns
-------
res : OptimizeResult
The optimization result represented as a
``scipy.optimize.OptimizeResult`` object. Important attributes are:
``x`` the solution array, ``success`` a Boolean flag indicating if
the optimizer exited successfully and ``message`` which describes
the cause of the termination. See `scipy.optimize.OptimizeResult`
for a description of other attributes.
"""
项目详情
关闭
gdprox-0.3.tar.gz的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 7f077fd7c5f377c5aa34a0ec90cf1d7d2f7efe39e02061eb3b474130134498b4 |
|
MD5 | e5a3d3496e9d37570a6554829fe99eba |
|
BLAKE2b-256 | ae613bb674f1c63ee9bf3b27929c00bf4563d3a82c4b267ad3f4d117555f4d10 |