跳转到主要内容

使用REOF方法实现洪水淹没范围预测的Python实现

项目描述

fierpy

使用REOF方法实现洪水淹没范围预测的Python实现

基于Chang等人2020年的方法 Chang et al., 2020

安装

$ conda create -n fier -c conda-forge python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows

$ conda activate fier

$ pip install git+https://github.com/servir/fierpy.git

在OpenSARlab中安装

$ conda create --prefix /home/jovyan/.local/envs/fier python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows jupyter kernda

$ conda activate fier

$ pip install git+https://github.com/servir/fierpy.git

$ /home/jovyan/.local/envs/fier/bin/python -m ipykernel install --user --name fier

$ conda run -n fier kernda /home/jovyan/.local/share/jupyter/kernels/fier/kernel.json --env-dir /home/jovyan/.local/envs/fier -o

要求

  • numpy
  • xarray
  • pandas
  • eofs
  • geoglows
  • scikit-learn
  • rasterio

示例使用

import xarray as xr
import fierpy

# read sentinel1 time series imagery
ds = xr.open_dataset("sentine1.nc")

# apply rotated eof process
reof_ds = fierpy.reof(ds.VV,n_modes=4)

# get streamflow data from GeoGLOWS
# select the days we have observations
lat,lon = 11.7122,104.9653
q = fierpy.get_streamflow(lat,lon)
q_sel = fierpy.match_dates(q,ds.time)

# apply polynomial to different modes to find best stats
fit_test = fierpy.find_fits(reof_ds,q_sel,ds)

项目详情


下载文件

下载适用于您平台的文件。如果您不确定选择哪个,请了解有关安装包的更多信息。

源分发

fierpy-0.0.4.tar.gz (7.1 kB 查看哈希值)

上传时间:

构建分发

fierpy-0.0.4-py3-none-any.whl (7.2 kB 查看哈希值)

上传时间: Python 3

支持