Skip to main content

Manage and automatize datasets for data science projects.

Project description

Dataset Manager

Manage and automatize your datasets for your project with YAML files.

Build Status

Current Support: Python 2.7Python 3.4Python 3.5Python 3.6Python 3.7Python 3.8

How it Works

This project create a file called identifier.yaml in your dataset directory with these fields:

source: https://raw.githubusercontent.com/pcsanwald/kaggle-titanic/master/train.csv

description: this dataset is a test dataset

format: csv

identifier: is the identifier for dataset reference is the file name with yaml extension.

source: is location from dataset.

description: describe your dataset to remember later.

Each dataset is a YAML file inside dataset directory.

Installing

With pip just:

pip install dataset_manager

With conda:

conda install dataset_manager

Using

You can manage your datasets with a list of commands and integrate with Pandas or other data analysis tool.

List all Datasets

Return a List with all Datasets from dataset path

from dataset_manager import DatasetManager

manager = DatasetManager(dataset_path)

manager.list_datasets()

Get one Dataset

Get Dataset line as dict

from dataset_manager import DatasetManager

manager = DatasetManager(dataset_path)

manager.get_dataset(identifier)

Create a Dataset

Create a Dataset with every information you want inside dataset_path defined.

from dataset_manager import DatasetManager

manager = DatasetManager(dataset_path)

manager.create_dataset(identifier, source, description, **kwargs)

Remove a Dataset

Remove Dataset from dataset_path

from dataset_manager import DatasetManager

manager = DatasetManager(dataset_path)

manager.remove_dataset(identifier)

Contributing

Just make pull request and be happy!

Let's grow together ;)

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page