Microsoft Azure Custom Vision服务的客户端
项目描述
py_custom_vision_client
此存储库包含一个用于Custom Vision Service的简单Python客户端。
用法
# first, train a model
from custom_vision_client import TrainingClient, TrainingConfig
azure_region = "southcentralus"
training_key = "my-training-key" # from settings pane on customvision.ai
training_client = TrainingClient(TrainingConfig(azure_region, training_key))
project_id = training_client.create_project("my-project-name").Id
training_client.create_tag(project_id, "Cat")
training_client.create_tag(project_id, "Dog")
training_client.add_training_images(project_id, ["kitten.jpg"], "Cat")
training_client.add_training_images(project_id, ["akita.png", "spitz.png"], "Dog")
training_client.add_training_images(project_id, ["best-animal-pals.jpg"], "Cat", "Dog")
model_id = training_client.trigger_training(project_id).Id
# then, use the model to predict:
from custom_vision_client import PredictionClient, PredictionConfig
azure_region = "southcentralus"
prediction_key = "my-prediction-key" # from settings pane on customvision.ai
prediction_client = PredictionClient(PredictionConfig(azure_region, project_id, prediction_key))
predictions = prediction_client.classify_image("cat.jpg", model_id) # could also be a url to a file
best_prediction = max(predictions, key=lambda _: _.Probability)
print(best_prediction.Tag)
命令行界面
您还可以通过命令行界面与Custom Vision Service进行交互
# first, train a model
python3 -m custom_vision_client.training \
--key="my-training-key" \
--projectname="my-project-name" \
--imagesroot="/path/to/images"
# then, use the model to predict:
python3 -m custom_vision_client.prediction \
--key="my-prediction-key" \
--projectid="my-project-id-from-training" \
--modelid="my-model-id-from-training" \
--image="path-or-url-to-image"
命令行界面假定您的训练图像按文件夹组织,每个文件夹都包含该标签的所有训练图像
/path/to/images
├── label_one
│ ├── image_1.jpg
│ ├── image_2.png
│ └── image_3.png
└── label_two
├── image_4.jpg
└── image_5.jpg
项目详情
关闭
custom_vision_client-0.0.8.tar.gz的散列
算法 | 散列摘要 | |
---|---|---|
SHA256 | f6d1f0405b63621a10853da1a1b4b93f54a300837178c7ddf68fc95ca2635483 |
|
MD5 | d73433975cb2acb2dc7ece001ba9525f |
|
BLAKE2b-256 | 4d22b8ec33004828550f44e7ba8fab243aba518972fdc7cf6e2dfff476274feb |