Skip to main content

cuCIM - an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.

Project description

cuCIM

The RAPIDS cuCIM is an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.

NOTE: For the latest stable README.md ensure you are on the main branch.

Quick Start

Install cuCIM

pip install cucim

Open Image

from cucim import CuImage
img = CuImage('image.tif')

See Metadata

import json
print(img.is_loaded)        # True if image data is loaded & available.
print(img.device)           # A device type.
print(img.ndim)             # The number of dimensions.
print(img.dims)             # A string containing a list of dimensions being requested.
print(img.shape)            # A tuple of dimension sizes (in the order of `dims`).
print(img.size('XYC'))      # Returns size as a tuple for the given dimension order.
print(img.dtype)            # The data type of the image.
print(img.channel_names)    # A channel name list.
print(img.spacing())        # Returns physical size in tuple.
print(img.spacing_units())  # Units for each spacing element (size is same with `ndim`).
print(img.origin)           # Physical location of (0, 0, 0) (size is always 3).
print(img.direction)        # Direction cosines (size is always 3x3).
print(img.coord_sys)        # Coordinate frame in which the direction cosines are 
                            # measured. Available Coordinate frame is not finalized yet.

# Returns a set of associated image names.
print(img.associated_images)
# Returns a dict that includes resolution information.
print(json.dumps(img.resolutions, indent=2))
# A metadata object as `dict`
print(json.dumps(img.metadata, indent=2))
# A raw metadata string.
print(img.raw_metadata) 

Read Region

from matplotlib import pyplot as plt
def visualize(image):
    dpi = 80.0
    height, width, _ = image.shape
    plt.figure(figsize=(width / dpi, height / dpi))
    plt.axis('off')
    plt.imshow(image)
import numpy as np

# Read whole slide at the lowest resolution
resolutions = img.resolutions
level_count = resolutions["level_count"]

# Note: ‘level’ is at 3rd parameter (OpenSlide has it at 2nd parameter)
#   `location` is level-0 based coordinates (using the level-0 reference frame)
#   If `size` is not specified, size would be (width, height) of the image at the specified `level`.
region = img.read_region(location=(10000, 10000), size=(512, 512), level=level_count-1)

visualize(region)
#from PIL import Image
#Image.fromarray(np.asarray(region))

Acknowledgments

Without awesome third-party open source software, this project wouldn't exist.

Please find LICENSE-3rdparty.md to see which third-party open source software is used in this project.

License

Apache-2.0 License (see LICENSE file).

Copyright (c) 2020-2021, NVIDIA CORPORATION.

Changelog

0.18.2 (2021-03-29)

  • Use the white background only for Philips TIFF file.
    • Generic TIFF file would have the black background by default.
  • Fix upside-downed image for TIFF file if the image is not RGB & tiled image with JPEG/Deflate-compressed tiles.
    • Use slow path if the image is not RGB & tiled image with JPEG/Deflate-compressed tiles.
      • Show an error message if the out-of-boundary cases are requested with the slow path.
      • ValueError: Cannot handle the out-of-boundary cases for a non-RGB image or a non-Jpeg/Deflate-compressed image.

0.18.1 (2021-03-17)

  • Disable using cuFile
    • Remove warning messages when libcufile.so is not available.
      • [warning] CuFileDriver cannot be open. Falling back to use POSIX file IO APIs.

0.18.0 (2021-03-16)

  • First release on PyPI with only cuClaraImage features.
  • The namespace of the project is changed from cuimage to cucim and project name is now cuCIM
  • Support Deflate(zlib) compression in Generic TIFF Format.
    • libdeflate library is used to decode the deflate-compressed data.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page