纯Python Bloom Filter模块
项目描述
提供了一个纯Python Bloom Filter(低存储需求,概率集合数据结构)。已知它在CPython 3.x、Pypy和Jython上工作。
包括mmap、内存和磁盘查找后端。
本项目基于drs-bloom-filter和bloom_filter_mod构建。详情和链接可以在AUTHORS.md中找到。
使用方法
用户指定所需的元素最大数量和期望的最大误报概率,模块将计算其余部分。
from bloom_filter2 import BloomFilter # instantiate BloomFilter with custom settings, # max_elements is how many elements you expect the filter to hold. # error_rate defines accuracy; You can use defaults with # `BloomFilter()` without any arguments. Following example # is same as defaults: bloom = BloomFilter(max_elements=10000, error_rate=0.1) # Test whether the bloom-filter has seen a key: assert "test-key" not in bloom # Mark the key as seen bloom.add("test-key") # Now check again assert "test-key" in bloom
项目详情
关闭
bloom-filter2-2.0.0-1.tar.gz 的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 310e5d3aa15be6e3d2285a7111f60cc44a1f500159412f2c72d155f43037cefd |
|
MD5 | 5c9dd90c629e42d51bebf7fbafdc7930 |
|
BLAKE2b-256 | 2b5d8de4a849ebe212217e6d8f4798a6918d4035e741c44730da81272f170b47 |
关闭
bloom_filter2-2.0.0-py3-none-any.whl 的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | f9d3a3a44ae917ab9c13f71b542ac88b863f0cf4e64afbca48777cf0d5310c93 |
|
MD5 | 295ef3562662feedf0245deca6ab5356 |
|
BLAKE2b-256 | 52d7871408c1c1230af64eb00e2064f6e8a065ae652f17f010b3f4f102e5fbac |