Autogen ContextPlus, User defined AutoGen model_context
Project description
🧠 Autogen ContextPlus
Modular, customizable, and serializable context engine for AutoGen — enabling structured message summarization, filtering, and rewriting logic with full compatibility.
✨ What is ContextPlus?
autogen-contextplus
provides a general-purpose context modifier system for AutoGen’s model_context
layer. It supports:
- ✅ Condition-triggered message summarization
- ✅ Agent- or function-based message rewriting
- ✅ Component-based serialization / deserialization
- ✅ Full support for user-defined logic via AutoGen
FunctionTool
or custom agents
🔧 Installation
pip install autogen-contextplus
For development and type checking:
pip install -e ".[dev]"
Example
import asyncio
from pprint import pprint
from typing import List
from autogen_core.models import UserMessage, AssistantMessage
from autogen_ext.models.replay import ReplayChatCompletionClient
from autogen_ext.models.anthropic import AnthropicChatCompletionClient
from autogen_agentchat.agents import AssistantAgent
from autogen_core import CancellationToken
from autogen_core.model_context import BufferedChatCompletionContext
from autogen_contextplus.conditions import (
MaxMessageCondition
)
from autogen_contextplus.base.types import (
ModifierFunction,
)
from autogen_contextplus import (
ContextPlusChatCompletionContext
)
from autogen_core.models import LLMMessage
def buffered_summary(
messages: List[LLMMessage],
non_summarized_messages: List[LLMMessage],
) -> List[LLMMessage]:
"""Summarize the last `buffer_count` messages."""
if len(messages) > 3:
return messages[-3:]
return messages
async def main():
client = ReplayChatCompletionClient(
chat_completions=[
"paris",
"seoul",
"paris",
"seoul",
]
)
context = ContextPlusChatCompletionContext(
modifier_func = buffered_summary,
modifier_condition = MaxMessageCondition(max_messages=2)
)
agent = AssistantAgent(
"helper",
model_client=client,
system_message="You are a helpful agent",
model_context=context
)
await agent.run(task="What is the capital of France?")
res = await context.get_messages()
print(f"[RESULTS] res:")
pprint(res)
print(f"[RESULTS] len_context : {len(res)}, context_type: {type(context)}")
await agent.run(task="What is the capital of Korea?")
res = await context.get_messages()
print(f"[RESULTS] res:")
pprint(res)
print(f"[RESULTS] len_context : {len(res)}, context_type: {type(context)}")
print("==========================")
cancellation_token = CancellationToken()
await agent.on_reset(cancellation_token=cancellation_token)
test = agent.dump_component()
agent = AssistantAgent.load_component(test)
context = agent.model_context
await agent.run(task="What is the capital of France?")
res = await context.get_messages()
print(f"[RESULTS] res:")
pprint(res)
print(f"[RESULTS] len_context : {len(res)}, context_type: {type(context)}")
await agent.run(task="What is the capital of Korea?")
res = await context.get_messages()
print(f"[RESULTS] res:")
pprint(res)
print(f"[RESULTS] len_context : {len(res)}, context_type: {type(context)}")
if __name__ == "__main__":
asyncio.run(main())