提供访问ARM数据示例/笔记本数据仓库的实用函数
项目描述
arm-test-data
一个与社区分享大气数据的地方,这些数据在大气辐射测量用户设施以及更广泛的范围内共享!
样本数据集
这些文件用作openradar示例/笔记本中的样本数据,并由arm-test-data
包下载
201509021500.bi
AAFNAV_COR_20181104_R0.ict
NEON.D18.BARR.DP1.00002.001.000.010.001.SAAT_1min.2022-10.expanded.20221107T205629Z.csv
NEON.D18.BARR.DP1.00002.001.sensor_positions.20221107T205629Z.csv
NEON.D18.BARR.DP1.00002.001.variables.20221201T110553Z.csv
anltwr_mar19met.data
ayp22199.21m
ayp22200.00m
brw21001.dat
brw_12_2020_hour.dat
brw_CCl4_Day.dat
co2_brw_surface-insitu_1_ccgg_MonthlyData.txt
ctd21125.15w
ctd22187.00t.txt
enametC1.b1.20221109.000000.cdf
gucmetM1.b1.20230301.000000.cdf
list_of_files.txt
maraosmetM1.a1.20180201.000000.nc
marirtsstM1.b1.20190320.000000.nc
marnavM1.a1.20180201.000000.nc
met_brw_insitu_1_obop_hour_2020.txt
met_lcl.nc
mosaossp2M1.00.20191216.000601.raw.20191216000000.ini
mosaossp2M1.00.20191216.130601.raw.20191216x193.sp2b
mosaossp2auxM1.00.20191217.010801.raw.20191216000000.hk
nsacloudphaseC1.c1.20180601.000000.nc
nsasurfspecalb1mlawerC1.c1.20160609.080000.nc
sgp30ebbrE13.b1.20190601.000000.nc
sgp30ebbrE32.b1.20191125.000000.nc
sgp30ebbrE32.b1.20191130.000000.nc
sgp30ecorE14.b1.20190601.000000.cdf
sgpaerich1C1.b1.20190501.000342.nc
sgpaosacsmE13.b2.20230420.000109.nc
sgpaosccn2colaE13.b1.20170903.000000.nc
sgpbrsC1.b1.20190705.000000.cdf
sgpceilC1.b1.20190101.000000.nc
sgpco2flx4mC1.b1.20201007.001500.nc
sgpdlppiC1.b1.20191015.120023.cdf
sgpdlppiC1.b1.20191015.121506.cdf
sgpirt25m20sC1.a0.20190601.000000.cdf
sgpmetE13.b1.20190101.000000.cdf
sgpmetE13.b1.20190102.000000.cdf
sgpmetE13.b1.20190103.000000.cdf
sgpmetE13.b1.20190104.000000.cdf
sgpmetE13.b1.20190105.000000.cdf
sgpmetE13.b1.20190106.000000.cdf
sgpmetE13.b1.20190107.000000.cdf
sgpmetE13.b1.20190508.000000.cdf
sgpmetE13.b1.20210401.000000.csv
sgpmetE13.b1.yaml
sgpmetE15.b1.20190508.000000.cdf
sgpmetE31.b1.20190508.000000.cdf
sgpmetE32.b1.20190508.000000.cdf
sgpmetE33.b1.20190508.000000.cdf
sgpmetE34.b1.20190508.000000.cdf
sgpmetE35.b1.20190508.000000.cdf
sgpmetE36.b1.20190508.000000.cdf
sgpmetE37.b1.20190508.000000.cdf
sgpmetE38.b1.20190508.000000.cdf
sgpmetE39.b1.20190508.000000.cdf
sgpmetE40.b1.20190508.000000.cdf
sgpmetE9.b1.20190508.000000.cdf
sgpmet_no_time.nc
sgpmet_test_time.nc
sgpmfrsr7nchE11.b1.20210329.070000.nc
sgpmmcrC1.b1.1.cdf
sgpmmcrC1.b1.2.cdf
sgpmplpolfsC1.b1.20190502.000000.cdf
sgprlC1.a0.20160131.000000.nc
sgpsebsE14.b1.20190601.000000.cdf
sgpsirsE13.b1.20190101.000000.cdf
sgpsondewnpnC1.b1.20190101.053200.cdf
sgpstampE13.b1.20200101.000000.nc
sgpstampE31.b1.20200101.000000.nc
sgpstampE32.b1.20200101.000000.nc
sgpstampE33.b1.20200101.000000.nc
sgpstampE34.b1.20200101.000000.nc
sgpstampE9.b1.20200101.000000.nc
sodar.20230404.mnd
twpsondewnpnC3.b1.20060119.050300.custom.cdf
twpsondewnpnC3.b1.20060119.112000.custom.cdf
twpsondewnpnC3.b1.20060119.163300.custom.cdf
twpsondewnpnC3.b1.20060119.231600.custom.cdf
twpsondewnpnC3.b1.20060120.043800.custom.cdf
twpsondewnpnC3.b1.20060120.111900.custom.cdf
twpsondewnpnC3.b1.20060120.170800.custom.cdf
twpsondewnpnC3.b1.20060120.231500.custom.cdf
twpsondewnpnC3.b1.20060121.051500.custom.cdf
twpsondewnpnC3.b1.20060121.111600.custom.cdf
twpsondewnpnC3.b1.20060121.171600.custom.cdf
twpsondewnpnC3.b1.20060121.231600.custom.cdf
twpsondewnpnC3.b1.20060122.052600.custom.cdf
twpsondewnpnC3.b1.20060122.111500.custom.cdf
twpsondewnpnC3.b1.20060122.171800.custom.cdf
twpsondewnpnC3.b1.20060122.232600.custom.cdf
twpsondewnpnC3.b1.20060123.052500.custom.cdf
twpsondewnpnC3.b1.20060123.111700.custom.cdf
twpsondewnpnC3.b1.20060123.171600.custom.cdf
twpsondewnpnC3.b1.20060123.231500.custom.cdf
twpsondewnpnC3.b1.20060124.051500.custom.cdf
twpsondewnpnC3.b1.20060124.111800.custom.cdf
twpsondewnpnC3.b1.20060124.171700.custom.cdf
twpsondewnpnC3.b1.20060124.231500.custom.cdf
twpvisstgridirtemp.c1.20050705.002500.nc
vdis.b1
添加新数据集
要添加新的数据集文件,请按照以下步骤操作
- 将数据集文件添加到
data/
目录 - 从命令行运行
python make_registry.py
脚本来更新位于arm-test-data/registry.txt
的注册表文件 - 提交并将您的更改推送到GitHub
在笔记本和/或脚本中使用数据集
-
确保您的环境中安装了
arm-test-data
包python -m pip install arm-test-data # or python -m pip install git+https://github.com/ARM-DOE/arm-test-data # or conda install -c conda-forge arm-test-data
-
导入
DATASETS
并检查注册表以找出哪些数据集可用In [1]: from arm_test_data import DATASETS In [2]: DATASETS.registry_files Out[2]: ['sample_file.nc`]
-
要获取感兴趣的数据文件,请使用
.fetch
方法并提供数据文件名。这将- 如果文件不存在,则下载并缓存文件。
- 检索并返回本地路径
In [4]: filepath = DATASETS.fetch('sample_data.nc') In [5]: filepath Out[5]: '/Users/mgrover/Library/Caches/arm-test-data/sample_sgp_data.nc'
-
一旦您获得了本地文件路径,就可以使用它将数据集加载到pandas、xarray或您选择的任何包中
In [6]: radar = pyart.io.read(filepath)
更改默认数据缓存位置
默认缓存位置(数据在本地系统上保存的位置)取决于操作系统。您可以使用 locate()
方法来识别它
from arm_test_data import locate
locate()
位置可以被ACT_TEST_DATA_DIR
环境变量覆盖到指定的目标位置。
项目详情
下载文件
下载您平台对应的文件。如果您不确定选择哪个,请了解更多关于安装包的信息。
源分布
arm_test_data-0.0.12.tar.gz (17.1 kB 查看散列值)
构建分布
arm_test_data-0.0.12-py3-none-any.whl (12.2 kB 查看散列值)
关闭
arm_test_data-0.0.12.tar.gz的散列值
算法 | 散列摘要 | |
---|---|---|
SHA256 | 72533d6e44792eaca3242bf089b9cef49d1162e369d94df56f79306dba1eca63 |
|
MD5 | 830ecb4224d1914f146dfe4a8d6c25b1 |
|
BLAKE2b-256 | c6adf0672ccc01a840af2f051dfc91264b29e37f66f7184ff975f7ac75154418 |
关闭
arm_test_data-0.0.12-py3-none-any.whl的散列值
算法 | 散列摘要 | |
---|---|---|
SHA256 | c9d2fc79451d1f694d3107791c53dc091807229e97fe3e8b59ff1c45d548be86 |
|
MD5 | e37f0ed9806283f2d4ae55537269ee69 |
|
BLAKE2b-256 | 17e7902ba89faaa84dd21ff4a942fc4e43fe5aabfa381f9a2df41a917e9e1da8 |