提供访问ARM数据示例/笔记本数据仓库的实用函数
项目描述
arm-test-data
一个与社区分享大气数据的地方,这些数据在大气辐射测量用户设施以及更广泛的范围内共享!
样本数据集
这些文件用作openradar示例/笔记本中的样本数据,并由arm-test-data包下载
201509021500.biAAFNAV_COR_20181104_R0.ictNEON.D18.BARR.DP1.00002.001.000.010.001.SAAT_1min.2022-10.expanded.20221107T205629Z.csvNEON.D18.BARR.DP1.00002.001.sensor_positions.20221107T205629Z.csvNEON.D18.BARR.DP1.00002.001.variables.20221201T110553Z.csvanltwr_mar19met.dataayp22199.21mayp22200.00mbrw21001.datbrw_12_2020_hour.datbrw_CCl4_Day.datco2_brw_surface-insitu_1_ccgg_MonthlyData.txtctd21125.15wctd22187.00t.txtenametC1.b1.20221109.000000.cdfgucmetM1.b1.20230301.000000.cdflist_of_files.txtmaraosmetM1.a1.20180201.000000.ncmarirtsstM1.b1.20190320.000000.ncmarnavM1.a1.20180201.000000.ncmet_brw_insitu_1_obop_hour_2020.txtmet_lcl.ncmosaossp2M1.00.20191216.000601.raw.20191216000000.inimosaossp2M1.00.20191216.130601.raw.20191216x193.sp2bmosaossp2auxM1.00.20191217.010801.raw.20191216000000.hknsacloudphaseC1.c1.20180601.000000.ncnsasurfspecalb1mlawerC1.c1.20160609.080000.ncsgp30ebbrE13.b1.20190601.000000.ncsgp30ebbrE32.b1.20191125.000000.ncsgp30ebbrE32.b1.20191130.000000.ncsgp30ecorE14.b1.20190601.000000.cdfsgpaerich1C1.b1.20190501.000342.ncsgpaosacsmE13.b2.20230420.000109.ncsgpaosccn2colaE13.b1.20170903.000000.ncsgpbrsC1.b1.20190705.000000.cdfsgpceilC1.b1.20190101.000000.ncsgpco2flx4mC1.b1.20201007.001500.ncsgpdlppiC1.b1.20191015.120023.cdfsgpdlppiC1.b1.20191015.121506.cdfsgpirt25m20sC1.a0.20190601.000000.cdfsgpmetE13.b1.20190101.000000.cdfsgpmetE13.b1.20190102.000000.cdfsgpmetE13.b1.20190103.000000.cdfsgpmetE13.b1.20190104.000000.cdfsgpmetE13.b1.20190105.000000.cdfsgpmetE13.b1.20190106.000000.cdfsgpmetE13.b1.20190107.000000.cdfsgpmetE13.b1.20190508.000000.cdfsgpmetE13.b1.20210401.000000.csvsgpmetE13.b1.yamlsgpmetE15.b1.20190508.000000.cdfsgpmetE31.b1.20190508.000000.cdfsgpmetE32.b1.20190508.000000.cdfsgpmetE33.b1.20190508.000000.cdfsgpmetE34.b1.20190508.000000.cdfsgpmetE35.b1.20190508.000000.cdfsgpmetE36.b1.20190508.000000.cdfsgpmetE37.b1.20190508.000000.cdfsgpmetE38.b1.20190508.000000.cdfsgpmetE39.b1.20190508.000000.cdfsgpmetE40.b1.20190508.000000.cdfsgpmetE9.b1.20190508.000000.cdfsgpmet_no_time.ncsgpmet_test_time.ncsgpmfrsr7nchE11.b1.20210329.070000.ncsgpmmcrC1.b1.1.cdfsgpmmcrC1.b1.2.cdfsgpmplpolfsC1.b1.20190502.000000.cdfsgprlC1.a0.20160131.000000.ncsgpsebsE14.b1.20190601.000000.cdfsgpsirsE13.b1.20190101.000000.cdfsgpsondewnpnC1.b1.20190101.053200.cdfsgpstampE13.b1.20200101.000000.ncsgpstampE31.b1.20200101.000000.ncsgpstampE32.b1.20200101.000000.ncsgpstampE33.b1.20200101.000000.ncsgpstampE34.b1.20200101.000000.ncsgpstampE9.b1.20200101.000000.ncsodar.20230404.mndtwpsondewnpnC3.b1.20060119.050300.custom.cdftwpsondewnpnC3.b1.20060119.112000.custom.cdftwpsondewnpnC3.b1.20060119.163300.custom.cdftwpsondewnpnC3.b1.20060119.231600.custom.cdftwpsondewnpnC3.b1.20060120.043800.custom.cdftwpsondewnpnC3.b1.20060120.111900.custom.cdftwpsondewnpnC3.b1.20060120.170800.custom.cdftwpsondewnpnC3.b1.20060120.231500.custom.cdftwpsondewnpnC3.b1.20060121.051500.custom.cdftwpsondewnpnC3.b1.20060121.111600.custom.cdftwpsondewnpnC3.b1.20060121.171600.custom.cdftwpsondewnpnC3.b1.20060121.231600.custom.cdftwpsondewnpnC3.b1.20060122.052600.custom.cdftwpsondewnpnC3.b1.20060122.111500.custom.cdftwpsondewnpnC3.b1.20060122.171800.custom.cdftwpsondewnpnC3.b1.20060122.232600.custom.cdftwpsondewnpnC3.b1.20060123.052500.custom.cdftwpsondewnpnC3.b1.20060123.111700.custom.cdftwpsondewnpnC3.b1.20060123.171600.custom.cdftwpsondewnpnC3.b1.20060123.231500.custom.cdftwpsondewnpnC3.b1.20060124.051500.custom.cdftwpsondewnpnC3.b1.20060124.111800.custom.cdftwpsondewnpnC3.b1.20060124.171700.custom.cdftwpsondewnpnC3.b1.20060124.231500.custom.cdftwpvisstgridirtemp.c1.20050705.002500.ncvdis.b1
添加新数据集
要添加新的数据集文件,请按照以下步骤操作
- 将数据集文件添加到
data/目录 - 从命令行运行
python make_registry.py脚本来更新位于arm-test-data/registry.txt的注册表文件 - 提交并将您的更改推送到GitHub
在笔记本和/或脚本中使用数据集
-
确保您的环境中安装了
arm-test-data包python -m pip install arm-test-data # or python -m pip install git+https://github.com/ARM-DOE/arm-test-data # or conda install -c conda-forge arm-test-data
-
导入
DATASETS并检查注册表以找出哪些数据集可用In [1]: from arm_test_data import DATASETS In [2]: DATASETS.registry_files Out[2]: ['sample_file.nc`]
-
要获取感兴趣的数据文件,请使用
.fetch方法并提供数据文件名。这将- 如果文件不存在,则下载并缓存文件。
- 检索并返回本地路径
In [4]: filepath = DATASETS.fetch('sample_data.nc') In [5]: filepath Out[5]: '/Users/mgrover/Library/Caches/arm-test-data/sample_sgp_data.nc'
-
一旦您获得了本地文件路径,就可以使用它将数据集加载到pandas、xarray或您选择的任何包中
In [6]: radar = pyart.io.read(filepath)
更改默认数据缓存位置
默认缓存位置(数据在本地系统上保存的位置)取决于操作系统。您可以使用 locate() 方法来识别它
from arm_test_data import locate
locate()
位置可以被ACT_TEST_DATA_DIR环境变量覆盖到指定的目标位置。
项目详情
下载文件
下载您平台对应的文件。如果您不确定选择哪个,请了解更多关于安装包的信息。
源分布
arm_test_data-0.0.12.tar.gz (17.1 kB 查看散列值)
构建分布
arm_test_data-0.0.12-py3-none-any.whl (12.2 kB 查看散列值)
关闭
arm_test_data-0.0.12.tar.gz的散列值
| 算法 | 散列摘要 | |
|---|---|---|
| SHA256 | 72533d6e44792eaca3242bf089b9cef49d1162e369d94df56f79306dba1eca63 |
|
| MD5 | 830ecb4224d1914f146dfe4a8d6c25b1 |
|
| BLAKE2b-256 | c6adf0672ccc01a840af2f051dfc91264b29e37f66f7184ff975f7ac75154418 |
关闭
arm_test_data-0.0.12-py3-none-any.whl的散列值
| 算法 | 散列摘要 | |
|---|---|---|
| SHA256 | c9d2fc79451d1f694d3107791c53dc091807229e97fe3e8b59ff1c45d548be86 |
|
| MD5 | e37f0ed9806283f2d4ae55537269ee69 |
|
| BLAKE2b-256 | 17e7902ba89faaa84dd21ff4a942fc4e43fe5aabfa381f9a2df41a917e9e1da8 |